精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學基因遺傳病基因檢測機構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學基因準確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學元素會導致男性生殖系統(tǒng)的氧化應激和免疫遺傳學改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機制的變化相關(guān),作為男性生殖條件的病理生理障礙的標志;(4)免疫遺傳性疾病的環(huán)境應激因素如何伴隨男性不育和反應;環(huán)境和遺傳危險因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學基因醫(yī)學技術(shù)(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術(shù)部

亚洲一区二区中文| 香蕉视频在线免费看| 91精品成人免费国产片| 少妇太爽了在线观看视频| 精品久久久久久久无码人妻热| 久久国产成人亚洲精品影院老金| 妺妺窝人体色WWW聚色窝孕妇| 国产免费网站在线观看| 夜夜躁狠狠躁日日躁2022| 黑人大鷄巴精品A片| 午夜精品第一区第二区第三区| 91亚洲国产成人精品一区二三| 在线看人妻视频中文字幕| 国产亚洲又爽ⅴa在线天堂| 欧美在线视频免费播放| 欧美一区二区视频国产精品| 在线一区二区三区| 辽宁熟女高潮狂叫视频| 一区二区三区四区欧美极品| 最新在线精品国自产拍福利| 日韩毛片+18+欧美| 在线观看高清国产色视频| 日本一道综合久久aⅴ久久| 日韩欧美精品v片免费看| 91av免费在线观看| 天堂一区二区mv在线观看| 欧美日韩国产一级片免费网站| 亚洲欧美另类在线视频| 欧美一级a片一区二区三区| 欧美一区二区三区红桃小说| 少妇厨房愉情理伦片bd在线观看 | 日韩乱码人妻无码中文字幕久久| 巜波多野结衣私人教师| 久久蜜桃资源一区二区老牛| 国产精品中文原创av巨作首播| gogogo日本免费观看电视剧第17集| 91最新视频在线观看网址| 一道本av免费不卡播放| 国产欧美福利v888av| 国产av深夜精品福利专区| 国产91精品久久久久久精华液| 久久青青草原精品国产app| 精品美女自拍99RE热视频这里只精品 | 特级西西444www大胆免费看| 中文字幕av一区二区三区| 影音先锋黄色资源| 99久久精品无免国产免费| 日韩欧美高清在线一区二区| www超碰97com| 痉挛高潮喷水av无码免费| 成人a大片在线观看| 一区二区激情av| 久久精品国产乱子伦| 91中文字幕在线| 怡红院亚洲综合欧美久久久| 黄色一级片免费播放| 99国内视频免费在线观看| 精品黑人一区二区三区| 2019久久视频这里有精品15| 国产后入激情视频在线观看| 变态另类天上人间| 日韩欧美成人免费观看| 伊人69久久久久久综合国产| 亚洲综合无码av一区二区三区| 91av天堂在线观看视频| 欧美一区二区激情| 有码+欧美+国产| 国产精品99久久免费观看| gogogo高清视频大全| 亚洲欧美国产国产综合一区| 日本成人午夜视频| 欧美精品欧美极品欧美激情| 亚洲中文字幕阿阿视频在线| 亚洲热久久国产经典视频| 自拍亚洲欧美日韩一区二区三区| 金银瓶1—5普通话版| 波多野结衣精品一区二区三区| 91久久久久久国产精品| 女同一区二区三区在线观看| 亚洲国产日韩视频观看| 国产老熟女伦老熟妇视频| 99国产精品久久久蜜芽| av在线国产精品中文字幕| 香蕉视频+在线观看+色吧| 中文字幕亚洲综合久久综合| 国产精品久久av免费观看| 妙龄女被老汉压身小说作者其他小说| 狠狠噜天天噜日日噜无码| 激情一区二区三区| 国产视频资源在线观看| 午夜精品久久久久9999高清| 一区二区三区日韩亚洲中文视频| 无翼乌18禁全肉肉无遮挡彩色| 岛国片人妻三上悠亚| 精品人妻久久久久久888| 国产乱码久久久久久| 91久久国产一区二区三区| 日韩欧美高清字幕在线观看 | 国产女人久久精品视| 一区二区三区欧美视频| 亚洲乱码国产乱码精品精的特点 | 国产美女直播亚洲一区久久| 高潮+喷水+白浆| 精品欧美高清视频在线观看| 欧美亚洲日本一区| 欧美+日韩+免费| 天美麻花果冻视频大全英文版| 国产成人福利av综合导航| 久久精品人妻中文系列| 欧美婷婷六月丁香综合区| 制服丝袜+国产精品+中文字幕| 粉嫩av蜜桃av蜜臀av| 免费人成激情视频在线观看冫| 亚洲国内精品av五月天| 精品少妇一区二区三区在线观看| 国色天香成人一区二区| 成人在线视频网址| yy6080亚洲精品一区| 波多野结衣肉翻猛高潮| 丰满人妻做爰2理伦片免费看| 被老师粗大jib捣出了白浆视频| 国产九色在线播放九色| 91超碰在线播放| 亚洲男女羞羞无遮挡久久丫| 国产成a人亚洲精品在线观看| 日韩av三四级在线观看| 国产精品美女久久久久av爽| 日韩亚洲国产欧美精品久久| 风间由美+五十路| 伊人狼人大焦香久久网| √天堂8中文资源在线| 苍老师在线观看免费播放电视剧中文| 成人精品一区二区三区网站| 日韩黄色一级网站| 欧美三级在线观看视频| 免费av大全网站在线观看| 91美女诱惑国产精品视频| 香蕉视频在线免费看| 人妻丰满熟妇av无码区免| 熟妇激情内射com| 国产伦精品一区二区三区综合网| 国产精品久久久久久久久久久久午夜片 | 日韩欧美成人网站| 亚洲综合Av一区二区三区| 日本精品一卡二卡三卡四卡视| 亚洲最大av无码网站最新| 2020狠狠狠狠久久免费观看| 国产后进白嫩翘臀在线播放| 日韩精品不卡在线| 久久精品国产68国产精品亚洲| 亚洲国产成人精品女人久久久久 | 欧美日韩免费不卡激情在线视频| 中文字幕乱码熟女人妻水蜜桃| 在线视频免费观看一区国产| 秘书奶咪子真大高H乳夹| 国产精品成人亚洲777| 嫩草影院在线视频| 大地资源高清在线观看| 国产精品久久久人人看人人| 99在线成人精品视频| 国产高清一区二区三区视频| 久久久久国色av∨免费看| 和闺蜜野外交换做爰的注意事项| 日韩欧美精品一区二区三区四区| 亚洲卡一卡2卡3卡4精品| 国产精品亚洲欧美日韩在线观看| 不卡+一区二区视频+日本| 美女视频一区二区在线观看| 黄色精品视频一区二区三区| 久久久精品视频网站| 色哟哟丨小泬丨国产专区| 99国产精品久久久久老师| 夜夜嗨人妻av一区二区三区| 亚洲www久久久| 国产福利高颜值在线观看| 亚洲狠狠色成人综合网| 久久人人97超碰国产精品| 成人麻豆精品国产自产在线观看| 1024亚洲男人的天堂久久| 2014av天堂无码一区| 久久精品国产第一区| 美州a亚洲一视本频v色道| 日韩+国产+欧美成人| 羞羞视频在线观看免费| 菲儿+激情+影音先锋| 中文字幕网视频一区在线观看| 国产a在亚洲线播放| 国产亚洲精品自拍| 91狠狠色丁香婷婷综合久久| 99热这里有的只是精品| 成人欧美一区二区三区在线| 波多野结衣被躁120分钟小说| 韩国三级l中文字幕无码| 国产+欧美+激情| 欧美三级在线观看视频| 成人一区二区三区视频xxx| 国产做受高潮漫动| 久久国产精品久久喷水| 污网站在线免费看| 亚洲美女网站免费观看一区| 40岁成熟女人牲交片| 亚洲+视频+免费| 成人国产精品免费网站| 在线观看国产精品va| 美女视频黄免费的亚洲男人天堂| 婷婷丁香五月激情综合| 91精品国产一区二区三区蜜臀| 惠民福利国产卡二区三卡乱码 | 亚洲男女内射在线播放| 国产午夜18久久久久久白浆| 蜜桃91丨九色丨蝌蚪91桃色| 欧美视频在线观看精品二区 | 欧美日韩国产成人综合在线影院 | 日韩人妻少妇一区二区| 真实新婚偷拍Chinese| 多P无码视频网页| 中文字幕永久视频| 麻豆绿帽人妻白洁AV| 亚洲国产av午夜精品一区 | 久久久久国产精品人妻aⅴ网站| 久久精品国产亚洲av水果派| 亚洲成人国产精品| 欧美一级黃色A片免费看蜜桃熟了| 精品国产露脸久久av| 久久久久国产一区二区三区| 欧美日一区二区三区| 国精日本亚洲欧州国产中文久久| 91国偷自产中文字幕久久| 麻豆果冻传媒精品国产苹果| 夜夜爽一区二区三区| 黑人大战亚洲人精品一区| 一卡二卡三卡在线视频| 国产欧美日韩中文字幕第一页| 变态另类天上人间| aⅴ网站在线观看| 欧美xxxx做受欧美1314| 国产精品99久久久久久董美香| 成人美女免费网站视频| 国内大量揄拍人妻精品视频 | 日韩精品专区av无码| 欧美v国产在线一区二区三区| 日本免费最新高清不卡视频| 另类内射国产在线| 国产精品成人一区二区三区| 国产精品破处一区二区三区| 欧美激情videos| 2020亚洲欧美国产日韩| 亚洲视频一区二区在线免费观看| 97国语精品自产拍在线观看| 女人扒开腿婬乱A片| 9+1+视频在线| 日本久久777777777| 大香蕉网国产在线观看av| 日韩在线一区二区三区免费视频| 国产成人亚洲精品另类动态图| 国产精品国产三级国产专播精品人| 最新欧美激情视频一区二区三区| 亚洲国产精品久久久男人的天堂| 欧洲丰满少妇做爰视频爽爽| 亚洲高清www色好看美女| 成人亚洲欧美日韩在线观看| 欧美污视频在线播放网址| 91国偷自产中文字幕久久| 一区二区三区四区免费视频| 少妇精品偷拍高潮少妇小说 | 国产精品毛片在线完整版| 18+男同+日韩毛片| 亚洲日韩精品区二区av | 亚洲+欧洲+国产一区| 国产乱人激情h在线观看| 狠狠综合久久av一区二区蜜桃| 亚洲欧美精品中文一区二区三| 正在播放+日韩+无码| 国产亚洲成人av| 欧美色视频在线观看| 丰满无码人妻热妇无码区| 偷拍亚洲综合20p| 欧美国产一区二区三区小说| 精品国产成人在线一区二区| 91精品人妻麻豆一区二区| 国产+高潮+视频| 人妻懂色av粉嫩av浪潮av八戒| 国产+欧美+熟女| 九一麻花传剧mv在线看免费| 97这里有精品久久97| 丰滿老熟婦HD六十| 国产美女无套爽到高潮视频| japane欧美孕交se孕妇孕交| 久久久无码精品午夜| 久久久久人妻一区二区三区VR| 视频+国产+免费| 真人少妇高潮久久免费毛片| 亚洲中国国产av| 日韩在线视频播放免费视频完整版| 欧美精品午夜一区二区三区| 日韩中文在线播放| 国产精品一二三级| 麻豆果冻国产剧情av在线播放| 色综合视频一区二区三区44| 亚洲精品久久久久久久久久久| 9999免费视频| 国产伦久视频免费观看| 亚洲一卡二新区乱码绿踪林 | 国产一卡2卡3卡四卡精品国色无边| 亚洲精品92内射| 狠狠躁夜夜躁人人爽天天不| 国产aaaaaa| 国产精品久久久久久影院| 久久久噜噜噜久久久精品| 区一区二在线观看| 骚虎视频在线观看| 欧美日韩国产欧美日美国产精品| 91亚洲国产一区二区三区欧美| 精品欧美无人区乱码毛片| 色欲综合久久躁天天躁| 国产初高中生粉嫩无套第一次| www.97+色| 亚洲中国国产av| 成人免费一区二区国产精品| www.日韩精品在线观看| 国产激情久久久久99视频| 国产精品永久免费av观看| 97久久久久人妻精品专区| 四虎精品寂寞少妇在线观看| 亚洲精品午夜无码成人| 国产成人精品日本亚洲麻豆| 欧美麻豆精品久久久久久| 国产av天堂一区二区三区粉嫩| 中文字幕丝袜人妻乱一区三区| 日韩欧美亚洲精品高清国产| 国产二区三区在线| 窝窝午夜色视频国产精品破| 精品多人p群无码| 天堂av无码av一区二区三区| 无码h黄肉动漫在线观看网站| 日本爽爽爽爽爽爽在线观看免| 在线观看国产免费的电视剧| 国产精品一区二区久久精品| 中文字幕无码一区二区免费| 99国内精品久久久久久久| 亚αv无码久久久久久不卡网站| 国产午夜精品一区理论片| 18+小视频+日韩毛片| 国产精品久久久久久久久裸体 | 亚洲+综合久久+成人av| 无码中文字幕日韩专区视频| 欧美不卡视频一区发布| 国产明星精品一区二区刘亦菲| av无码精品一区二区三区三级| 大桥未久+无码+中文字幕| 日韩免费码中文在线观看| 91中文字幕在线| 免费视频永久免费人| 国产精品一区二区av影视| 精品人妻人伦一二三久久久久| 欧洲美熟女乱又伦免费视频| 日韩在线视频+在线播放| 日韩黄色一级网站| 国产精品亚洲综合久久系列| 国产欧美大片一区二区三区| 亚洲av无码专区首页第一页| 精品97国产免费人成视频| 久久久久久久91| 91插插插com| 三级高清中文欧美| 国产精品视频一区二区三区不看 | 无码色情巜肉欲办公室3| 欧美日韩一区三区| 国产精品99久久免费观看| 亚洲精品一区二区在线观看丁字裤| 久久久国产精品福利一区| 在线观看免费高清视频大全追剧| 无码av无码一区二区桃花岛| 亚洲欧美成人aⅴ在线| 99久久精品无免国产免费75| 国产精品久久久久久久久久妇女| 熟女老阿V8888AV| 亚洲欧洲精品在线| 伊人久久大香线蕉综合影院首页| 精品人妻伦九区久久aaa片| 中文无码一区二区不卡AV| 精品成人一区二区三区四区| 亚洲l码和欧洲m码的区别| 日韩乱码在线观看| 人妻少妇精品视频一区二区三区| 中文字字幕在线中文乱| 成年人在线观看视频| 国产精品综合久久久精品综合蜜臀| 强开小婷嫩苞又嫩又紧视频韩国| 伊人国产精品影院在线观看 | 日韩欧美一区视频| 亚洲+精品+欧美| 亚洲精品92内射| 肥臀熟妇淫语对白| 在线播放五十路熟妇| 亚洲日韩色欲色欲com| 精品国产又粗又猛又爽又黄| 国产欧美亚洲首页| 波多野结衣肉翻猛高潮 | 国产18高清视频在线观看| 日韩激情一区二区三区| 成人免费福利片在线观看| 日韩国产一区二区三区| 蜜桃丰满熟妇av无码区不卡| 国产美女91呻吟求| 高清有码国产一区二区| 在线+成人+日韩毛片| 亚洲亚洲人成网站77777| 亚洲精品久久久久久无码色欲四季| 国产精品无码v在线观看| 一区二区在线免费| 欧美人与动物胶配方有几种| 国产色综合天天综合网| 国产精品久久久久av一区| 久久国产露脸老熟女熟69| 色久悠悠婷婷综合在线亚洲| 精品国产av色欲果冻传媒| 国产精品中文字幕日韩精品| 国产九九久久99精品影院| 欧美一区二区三区人妖视频| 精品+国产+传媒| 国产91精品欧美| 日韩欧美在线精品| 国产成人一区二区精品九色| 护士洗澡被狂躁A片在线观看| 一区二区三区免费看| 日韩欧美国产一区二区在线播放| 久久精品色婷婷国产网站| 草草网站影院白丝内射| 婷婷色香五月综合激激情| 午夜dy888理论久久| 国产亚洲成年网址在线观看| 自拍偷拍亚洲色图日韩欧美| 先锋影音男人av资源| 波多野结衣中文字幕一区二区三区| 国产高清免费在线观看精品| 丰满少妇内射一区| 国产+欧美+熟女| 成人动漫视频在线观看免费高清 | 美女制服丝袜国产精品网站| 国产一级特黄毛片在线毛片| 日韩精品一区二区Av在线| 天堂网www中文在线| 亚洲国产精品久久又爽av| 91免费国产高清视频| 色综合色欲色综合色综合色综合r| 久久精品国产亚洲av成人文字| 三级高清日本久久| 一区二区在线免费视频| 99久久国产自偷自偷免费一区 | 久久天天躁夜夜躁狠狠85台湾| 欧美日韩国产精品| 精品乱人码一区二区二区| 又粗又硬又刺激欧美视频免费| 99福利资源久久福利资源| 国产亚洲日韩在线a不卡| 亚洲高清无码视频| 国产高清精品福利私拍国产 | 久久精品国产亚洲αv忘忧草| 亚洲精品一区二区三区不| 精工厂777免费观看电视剧| 国产一级特黄毛片在线毛片| 国产欧美日本亚洲精品一5区| 日本在线观看免费| 久久天天躁狠狠躁夜夜躁综合| 吸乳18禁羞羞二区三区| 麻豆ā片免费观看在线看| 亚洲成人一区在线| 嫩草影院ncyy| 无码aⅴ精品一区二区三区浪潮| 男女啪啪激情视频免费观看国产| 精品国产成人a区在线观看| 色综合久久久久综合99| 国产精品久久久久久久成人av| 成人黄色免费观看| 精品国产无乱码一区二区| 国产少女免费观看电视剧字幕大全下| 日韩精品――中文字幕| 污黄啪啪网18以下勿进免费的| 人妻少妇精品中文字幕av| 国产精品成人免费视频一区二区 | 国产精品一区二区久久| 国产乱人伦精品一区二区三区| 大桥未久+脚+磁力链接| 国语精品深夜亚洲妇久久资源 | 国产美女网站18禁| 91在线精品亚洲一区二区免費資訊| 日本乱码一区二区三区不卡| 99久久亚洲精品日本无码| 粗暴蹂躏av一区二区| 亚洲午夜精品一区二区国产| 久久精品亚洲一区二区三区浴池| 综合激情久久综合激情| 国产公开久久人人97超碰| 国产+欧美+日韩| 日本二区三区欧美亚洲国产| 日本成人美女在线视频网站| 精品老熟妇一区二区三区| 一级二级三级亚洲欧美大片| av一区二区无人区在线观看| 亚洲中文字幕av一区二区三区| 国产99久久精品免费看| 精品亚洲国产成人av制服丝袜| 少妇特黄一区二区三区| 伊人久久大香线蕉综合色狠狠| 日本一区二区最黄最色视频 | 亚洲熟女av一区二区三区软件| 欧美在线色视频在线观看| 亚洲国产欧美在线人成人| 99久久久精品免费国产| 国产欧美日韩精品一区二区图片 | 久久精品国产一区二区三区| 尤物97国产精品久久精品国产| 2022一本久道久久综合狂躁| 少妇久久久久久久| 国产偷窥熟女高潮精品视频 | 国产乱人伦精品一二三区二区 | 深夜男女福利18免费软件| 99国产精品熟女高清久久久久 | 国产亲子乱婬一级A片| 日韩精品一区在线观看视频| 午夜影视在线观看免费| 亚洲+欧洲+国产精品| 痴汉电车人妻被内谢下面很多水| 中文字幕99免费精品视频网| 亚洲综合色区中文字幕| 妈妈你真棒插曲mv在线观看免费| 亚洲国产视频精品一区二区| 18成人福利网站在线观看| 国产高清a视频在线观看| 国产国产精品久久久久久久| 黄色av一区二区三区四区| 国产99视频精品免视看芒果| 亚洲色大成网站www尤物| av一区二区在线播放| 中文字幕日韩三级| 久久男人av资源网站无码软件| 欧美日韩国产动漫在线| 国产+喷水+白浆| 五月天丁香婷婷亚洲综合一区| 国产女人在线观看| 精品一区二区三区自拍图片区| 久久婷婷五月综合色和啪| 另类图片+动漫+日韩| 巨茎与艳妇麻麻啪啪漫画| 亚洲AV综合A色AV中文| 国产精品成人免费久久黄av片| 成人精品一区二区三区网站| 国产在线清纯极品美女援交| 国产成人高清视频| 国产精品美女久久久久aⅴ| 免费av不卡在线观看| 亚洲无码大片日韩一区久久久| 亚洲啪啪aⅴ一区二区三区9色| 18+免费视频网站| 粉嫩av一区二区三区四区免费| 男人的天堂免费视频| 国产一级片免费观看| 69国产成人精品二区| 国产+欧美+激情| 美国午夜福利视频一二区| 欧美做受三级级视频播放| 一本无码视频一区二区三区| 国产精品一区二区三区九一麻豆| 国产aaaaaa| 激情综合亚洲色婷婷五月app| 国产免费a∨片在线观看不卡| 人妻在线日韩免费视频| 午夜福利人妻专区一区二区| 亚洲一区福利视频| 成人H动漫精品一区二区无码软件| 污18禁污色黄网站免费观看| 亚洲天堂2021av| 91精品国产一区| 免费+国产+视频| 国产乱子伦无套一区二区三区| 日韩精品欧美国产精品亚| 免费网站在线观看人数在哪里直播| 亚洲vr国产美女精品久久久久| 国产欧美日韩综合精品一区二区 | 黄网站色视频免费观看美女 | 国产在线观看mv免费全集电视剧大全 | 日韩人妻无码一区二区三区综合| 在火车千女人毛片看看| luna精品videossex| 一本到亚洲中文无码av| 亚洲一级视频在线观看视频| 久久这里只有精品首页 | 日韩精品人妻系列无码专区| 精品欧美乱码久久久久久 | 亚洲熟妇AV一区二区三区| 波多野结衣一区二区三区av高清| 久久久久久久91| 91在线喷水白浆| 免费大片黄在线观看| 99re视频在线| 亚洲va中文慕无码久久av| jiZZjiZZjiZZ亚洲熟女| 中文资源在线天堂库8| 三级视频在线播放| 中文区中文字幕免费看| 天堂视频中文在线| 国产精品一级a级理论片在线 | 又粗又黄又猛又爽大片免费| 西西人体44WWW高清大胆| 狠狠色噜噜狠狠狠777米奇小说 | 日本中文字幕中出在线| 日本人乱人乱亲乱色视频观看| 波多野结衣被躁50分钟| 国产目拍亚洲精品一区二区| 久久亚洲精品中文字幕无男同| 欧美婷婷六月丁香综合区| 毛片毛片毛片毛片| 日韩视频中文字幕精品偷拍| 国产成人精品久久一区二区| 青青草97国产精品免费观看 | 国产+日本+另类| 人妻丰满熟妇av无码区app| 色久综合网精品一区二区| 欧美+日韩+成人| 亚洲国产综合av| 熟妇全身大保健(对白)| 高清无码午夜福利视频| 国产日韩精品欧美一区喷水| 一级成人欧美一区在线观看| 精品人妻伦一二三久久18禁| 国产99视频精品免视看芒果| 亚洲a片成人无码久久精品色欲| 成人毛片视频免费看| 欧美一级a片一区二区三区| 亲密+磁力链接+下载| 黄色一级大片在线免费看产| 99久久婷婷国产综合精品草原| 亚洲国产午夜精品理论片妓女 | 人成午夜大片免费视频| 五月婷婷激情小说| 国产乱人伦偷精品视频不卡| 亚洲一级免费毛片| 成人国产免费观看| 洗澡被公强奷30分钟视频| 国产极品美女高潮抽搐免费网站| 人人澡人人澡人人看添av| 亚洲日韩精品区二区av| 亚洲精品成人av| 亚洲女同精品一区二区| 亚洲精品视频一二三区| 国产精品高潮呻吟久久久久久| 日韩精品久久久久久希崎杰西卡 | 毛多水多丰满女人A片| 成熟人妻av无码专区a片| 国产精品最新乱视频二区| 欧洲无线码免费一区| 偷拍真实偷窥XXX盗摄 | 美女+免费+国产在线| a片+磁力+下载| 人妻无码免费一区二区三区| 7878成人国产在线观看| 日韩三级一区二区三区| 欧美综合日韩中文字幕影院| 一区二区三区久久久国产| 午夜福利精品kkk在线| 亚洲制服丝中文字幕| 久久精品中文字幕一区二区三区| 手机无码人妻一区二区三区免费| 中美日韩精品在线免费观看| 亚洲日韩一区二区三区| 1024国产视频| 国产精品理论在线观看| 国产在线视频不卡一二| 2021少妇久久久久久久久久| 久久+蜜臀+综合| 亚洲精品少妇影院| 男人操女人免费看网站亚洲欧美 | 中文字字幕永久在线观看| 精品福利视频一区二区三区| 亚洲人成网站在线观看免费| 日韩美女免费毛片一区二区| 国产+免费+日韩| 亚洲国产精品久久久久麻| 18+日本一区二区| 亚洲av色香蕉一区二区| 拍拍拍无挡免费视频| 成人午夜三级视频| 在线国产一区二区| 亚洲日韩一区二区三区| 国产精品美女乱子伦高| 亚洲欧美综合精品另类天天更新 | 久久久久蜜桃精品成人片| 忘忧草www中文在线资源 | 成人a免费视频中文字幕| 熟女老阿V8888AV| 成人秘视频一区二区三区| 国产午夜福利久久精品| 久久精品99久久香蕉国产| 欧美精品少妇videofree720| 国产欧美一区二区三区午夜精品| 久久久国产一区二区三区四区小说 | 久久精品国产欧美日韩亚洲| 久久国产精品伦理片国产乱| 精品亚洲一区二区三区在线观看| 人妻熟女av一区二区三区| 亚洲欧美综合区自拍另类| 精品人妻毛片久久久久久| 国产高潮在线观看www| 九九热久久久99国产盗摄蜜臀| 亚洲欧洲精品在线| 日韩在线视频在线观看| 免费观看+影音先锋| www国产精品视频看看| 午夜福利天堂一区二区在线观看| 亚洲熟妇成人精品一区| 国产成人一区二区三区在线播放| 亚洲欧美日韩在线观看一区二区三区| 欧美亚洲另类日韩在线网页| 国产一区二区三区在线视频观看| 波多野结衣一区二区三区av高清 | 无码+会员+动漫| 国产亚洲欧美另类第一页| 国产亚洲精品久久久久久小舞 | 调教+白浆+高潮| 99国精品午夜福利视频不卡99| 在厨房拨开内裤进入毛片| 亚洲精品无码播放| 亚洲欧美日韩国产综合一区小说| 可以免费看日本黄色的网站| 99久久婷婷国产综合精品草原| www.国产成人在线免费看 | 亚洲成熟女人一区二区三区| 欧美成人精品区在线观看| 九色porny视频| 中国国产免费毛卡片| 天堂www天堂在线资源网| 国产美女免费网站| 久热这里只有精品99国产6| 农村女人毛片精品久久久| 猫咪免费人成网站在线观看| 在车里被高潮被c了八次| essuess免费观看播放| ww污污污网站在线看com| sm+另类+在线视频| 超碰+国产+在线| 亚洲精品无码久久不卡| 久久免费观看视频| 熟妇槡BBBB槡BBBB| 初撮り人妻ド五十路妻| 国产尤物精品自在拍视频首页| 久久天天躁狠狠躁夜夜AV| 97视频在线观看免费| 欧美日韩精品成人网视频| 国产+日产+欧美在线观看| 2021最新国产精品网站| 人妻丰满熟妇av无码区App| www夜夜操com| 中国美女毛片视频免费看| 国产精品久久久久国产三级传媒| 国产福利久久一区二区久久| 又粗又黄国产视频.com| 日韩精品无码一二区久乐网| 欧美+香蕉网+五月| 小视频免费在线观看| 亚洲午夜影院在线观看视频| 91社区在线高清| 日韩在线观看免费全集电视剧网站| 久久精品无码中文字幕| 99久久国产综合精品女同| 91精品国产人妻国产毛片在线| 毛片毛片毛片毛片| 亚洲欧美精品午睡沙发| 超级黄18禁色惰网站| 日本久久一级网站一欧美精品 | 亚洲综合欧美精品一区二区| 人妻丰满熟妇岳AV无码区HD| 国产成人午夜福利院| 黄色免费网站在线| 亚洲乱码国产乱码精品精男男| 午夜福利1000欧美在线观看| 怡春院熟女精品少妇aⅴ久久| 蜜桃视频在线观看免费网址入口| 精品免费国产一区二区三区四区介绍| 桃色视频高清亚洲一区二区在线| 亚洲精品制服丝袜四区| 美丽的小蜜桃《美剧》| 自拍+影音先锋+天堂网| 国产人久久人人人人爽| 麻豆国产网站入口| 国产亚洲五月天综合91| 18+成人免费视频| 男人天堂视频在线观看| 亚洲精品中文字幕无码AV| 浙江妇搡BBBB搡BBBB| 国产精品视频在视频| 色狠狠久久aa北条麻妃| 久久精品国产亚洲Av久| 波多野结衣中文字幕一区二区三区| 国产精品亚洲w码日韩中文| 一区二区免费视频| 在线观看特色大片免费网站 | 国产真人真事毛片| 在线播放亚洲第一字幕| 成人无码精品1区2区3区免费看| 亚洲一区日韩在线| 99在线成人精品视频| 国产精品美女久久久久av爽| 国产精品久久久久久久久免费| 漂亮人妻被黑人久久精品| 丰满熟妇人妻av无码区| 久久精品色婷婷国产网站| 日韩在线亚洲欧美另类青青| 欧美精品久久久久久久久久久| 懂色AV粉嫩AV蜜乳AV| 日韩精品欧美一区二区三区| 亚洲成高清a人片在线观看| 韩国无码精品1区| 久久久久久久久久久久中文字幕| 亚洲精品乱码久久久久久日本| 一本久久a久久精品综合夜| 亚洲另类国产精品中文字幕| 成人欧美一区二区国产精品| 亚洲精品视频在线观看网址网站| 日本黄色视频一区二区免费| 久久天天躁狠狠躁夜夜2o2o| 国产精品亚洲精品一区二区| 美利坚合众国av| 丁香婷婷六月综合交清| 在火车千女人毛片看看| 久久亚洲欧美日韩精品专区| 国产又黄又爽又大免费视频| 日韩人妻无码精品系列专区| 黄色视频国产免费观看| 国产+亚洲+制服| 黄色毛片一级黄色| 久久精品国产萌白酱一区二区| 天堂bt种子在线最新版资源| 国产成人一区二区三区久久精品| 懂色AV粉嫩AV蜜乳AV| 国产精品一区在线观看www| 国产精品美女久久久久AV福利| 亚洲一区二区+欧美| 日本大香蕉高清在线观看| caoporn+视频| 精品午夜福利在线观看| 麻豆精品国产专区在线观看| 久久婷婷五月综合成人d啪| 欧美孕妇孕交xxx| 国内精品国产三级国产a久久| 中文字幕在线视频不卡| 国产午夜精品福利视频| www黄色在线观看| 国产+免费+视频| 国产日本久久久久久久久婷婷| 亚洲最大日夜无码中文字幕| 欧美韩国一区二区| 国产成人精品亚洲午夜| 国语对白刺激精彩久久精品| 亚洲品质自拍视频网站| 樱花影院电视剧免费| 少妇又色又紧又爽又高潮| 亚洲国产一区二区波多野结衣| 亚洲一区日韩在线| 99久久人妻精品免费二区| 成人亚洲欧美日韩在线观看| 亚洲国产成人手机在线观看| 色欲综合久久中文字幕网| 欧美亚洲日韩在线在线影院| 无遮挡做爰激吻国产999| 日韩av手机在线免费播放| 国产老熟女伦老熟妇视频| 国产乱码一区二区三视频| 亚洲+欧洲+日韩在线| 天海翼精品久久久久中文字幕 | 午夜精品乱人伦小说区| 91久久国产一区二区三区| 亚洲一区二区精品视频在线观看 | 午夜乱蜜桃久久久乱| 中文字幕丰满乱孑伦无码专区| 在线视频国产网址你懂的| www.国产一区二区三区av| 国产三级在线免费观看| 精品久久香蕉国产线看观看亚洲| 亚洲精品国产自在现线最新| 99久久精品免费观看国产| 精品日韩国产一区二区三区| 国产+激情+喷水| 精品人妻艳妇嫩草AV少妇| 国产又黄又大视频| 欧美色欧美亚洲日韩在线播放| 中文字幕日本亚洲欧美不卡| 亚洲精品成人片在线观看精品字幕| 国产精品午夜成人免费观看| 国产美女视频免费观看www| 国产偷人妻精品19p| 亚洲高清国产av一二三区| 日日大香人伊一本线久| 国产av天堂一区二区三区粉嫩| 99在线免费观看| 久久久久青草线蕉亚洲麻豆| 美女又爽又黄又免费网站| 96亚洲精品久久久蜜桃| 欧美成人精品不卡在线观看| 亚洲精品第一国产综合麻豆| 91porny首页入口| 国产淫语对白说脏话aV| 中文字幕一区二区三区乱码在线| 在线a人片免费观看| 精品人妻码一区二区三区| 亚洲成人动漫在线观看| 国产精品久久久久久久久久| 亚洲欧美精品中文一区二区三| 国产亚洲自拍av| 久久久久久久一区| 国产精品欧美一区二区三区喷水 | 怡红院亚洲综合欧美久久久| 久久精品道一区二区三区| 国产午夜亚洲精品不卡在线观看| 色婷婷精品视频一区二区| 任你干在线精品视频网2| 青娱乐极品视觉盛宴av| 亚洲第一综合成人在线观看 | av久久悠悠天堂影音网址| 亚洲精品国产综合99久久夜夜嗨| 四房播播五月天+在线播放| 亚洲成人AV在线| 欧洲美熟女乱又伦免费视频| 成人H动漫精品一区二区无码软件| 窝窝午夜色视频国产精品破| 亚洲精品天天影视综合网 | 熟妇乱子伦海角社区| 国产97在线观看| 日韩激情免费视频一区二区| 欧美乱妇日本无乱码特黄大片 | 亚洲国产天堂视频在线播放| 久久婷婷五月综合色和啪| 成人午夜高潮a∨猛片| 夜鲁夜鲁狠鲁天天在线| 国产一级免费观看| 国产精品久久久久久久久免费丝袜| 狠狠色综合Tⅴ久久久久久| 国产午夜精品一区理论片| 韩国美女一区二区在线观看视频| 国产成人精品午夜福利女同| 精品国产一区二区三区日日嗨| 国产又猛又粗又爽又黄91| 亚洲综合www在线观看 | 中文字幕韩国欧美视频在线| 一区二区福利视频| 国产精品入口久久| 亚洲黄色免费网站| 国产精品视频一区二区三区不看| 欧美熟妇交换做爰XXXⅩ网站| 人妻美妇av一区二区精品| 无遮挡又黄又爽的免费视频| 久久成人免费精品网站| 亚洲无码高清一区二区三区视频| 国产少女免费观看电视剧字幕大全下 | 国产精品视频全国免费观看| 最近中文字幕在线视频8| 久久九九51精品国产免费看| 久久久久午夜精品色av| 国产精品二区一区| 青柠影院在线观看高清电视剧荣耀| 国产日韩精品一区在线观看| 少妇人妻无码专区毛片| av无码精品一区二区三区三级| 夜鲁鲁鲁夜夜综合视频| 丰满人妻熟妇乱又仑精品| 91久久久久久国产精品| 98av精品一区二区三区| 色综合久久综合欧美综合网| 懂色av蜜臀av粉嫩av分享吧| 熟女内射视频18| 最近最新中文字幕大全直播| 精品人妻码一区二区三区| 九色在线观看视频| 国产黄色片网站大全| 国产精品区一区二区三| 久久精品视频国产| 免费黄色片一区二区三区| 成在人线av无码免费看网站| 亚洲中国精品黄色av一区| 青青草97国产精品免费观看| 亚洲国产成人综合| 十八禁在线观看视频播放免费 | 伊在人亚洲香蕉精品区| 午夜精品第一区第二区第三区| 国精品午夜福利视频不卡| 不卡无码人妻一区二区| 女同久久精品国产99国产精品| 亚洲av成人国产精品动漫| 97成人精品区在线播放| 国产欧美亚洲麻豆天堂第一页 | 欧洲一区二区成人| 一本到综在合线伊人 | 国产精品一区二区久久乐夜夜嗨| aa亚洲永久免费精品免费| 欧美专区日韩视频人妻| 中文字幕一区二区三区乱码在线| 日韩欧美中文字幕在线观看免费| 白嫩老师肉体videosd| 国产成人高清视频| 新婚夜少妇被躁bd免费视频| 在线观看av网站永久免费观看| 天天综合色天天综合色h| 精品人妻码一区二区三区| 亚洲日韩精品区二区av| 午夜精品a片一区二区三区老狼 | 少妇精品无码一区二区免费视频| 国产亚洲综合区成人国产| 大家可以在这里国产一级淫片a视频免费观看 | 国产+在线+激情| 日韩中文字幕在线观看| 精品偷自拍另类在线观看| 国产精品美女www爽爽爽软件| 一个本道久久综合久久88| 国产三级精品三级三级视频| 日韩国产精品一区二区三区| 懂色av绯色av密臀av| 日韩精品免费一区二区夜夜| 亚洲人成人无码www| 777米奇色888狠狠俺去啦| 激情综合色五月六月婷婷| 少妇伦子伦精品无吗| 日本黄色视频在线观看一区| 久久精品国产只有精品2020| 亚洲一区二区影视| 秋霞特色aa大片| 羞羞视频在线免费| 巨爆乳肉感一区二区三区| 九九热线有精品视频86| 暴躁妹妹高清免费观看电视剧视频 | caoporn+视频| 亚洲国产中文字幕2020| 中文字字幕在线中文乱| 亚洲国产精品成人综合色区| 日本免费一区二区三区最新| 91香蕉视频国产在线观看| 亚洲va欧美va人人爽春色影视| 婷婷丁香俺来也久久一区二区| 色婷婷婷在线网站| 成人免费看黄网站在线观看| 欧美一区二区视频国产精品| 伊人国产精品影院在线观看| 重囗味sM群虐一区二区| 熟妇激情内射com| 97成人做爰A片无遮挡直播 | 国产又粗又猛又爽又黄的a视频| 国产成人短视频在线观看| 国产视频一区二区二区三区| 东莞+无码+下载| 91无人区乱码卡一卡二卡| 中文字幕在线视频免费视频| 1024国产成人精品视频| 国产精品日韩欧美亚洲另类 | 久久国产综合尤物免费观看| 一本大道苍井空波多野结衣| 一区二区不卡免费视频| 屁屁国产第一页草草影院| 欧美在线播放一区二区欧美馆 | 天堂√最新版在线| 中文字幕在线精品中文字幕导入| 久久99男同女同国产观看| 精久国产av一区二区三区孕妇| 男女乱淫免费视频一区二区三区 | 亚洲第一极品精品无码久久| 中国美女毛片视频免费看| 成人午夜精品一区二区张津瑜| 精品无码乱码av| 琪琪在线影院电视剧免费| 国产精品久久久久久超碰| 18+视频在线看| 黑色丝袜国产精品| 中文字幕av手机版| 一本无码人妻在中文字幕| 精品国产av一区二区三区蜜臀| 精品视频一区二区三区| 亚洲色婷婷婷婷五月基地| 日韩中文字幕av在线 | 国产美女又黄又爽的视频| 亚洲精品免费在线观看视频| 国产精品+女人呻吟+在线观看| 日韩高清av免费在线观看| 午夜福利国产精品久久| www.免费在线不卡av| 亚洲国产欧美一区二区三区一| 国产三级片在线视频观看| 香蕉视频在线观看黄| 精品国产鲁一鲁一区二区三区| 日本一区二区三区四区18 | 欧美最猛黑人xxxxx猛交| 香蕉在线精品视频在线观看| 欧美变态另类刺激| 不卡一区二区在线视频观看| 久久久久亚洲av无码专| 久久久成人精品av四区| 激情一区二区三区| 久久久久国产精品亚洲欧美| 国产在线清纯极品美女援交 | 精品国产色综合久久| 国产三级免费观看| 国产热a欧美热a视频在线观看 | 搡BBB搡BBBB搡BBBB| 白浆+高潮+蜜桃| 小黄鸭+av导航+在线| 国产精品午夜成人免费观看| 精品亚洲一区二区三区一| 国产精品沙发午睡系列| 国产精品成人**免费视频| 国产探花视频在线观看网址| 农村乱子伦毛片国产乱| 91精品aa一区二区三区| 日日大香人伊一本线久| 国产欧美日韩视频在线观看| 亚洲国产精华液网站w| 国产精品一区二区久久乐夜夜嗨| 无码av无码一区二区桃花岛| 精品国产av色欲果冻传媒| 大桥未久+无码+bt| 刘玥亚洲一区二区三区91久久| 665566综合中文字幕在线| 国内精品久久久久久影院| 中文字幕在线不卡黄色a| 黄色小视频在线观看| 国产永久免费高清在线| 懂色AV粉嫩AV蜜乳AV| 国产色A∨在线看精品| 国产精品久久久久AV台湾| 欧美.日韩在线一区二区三区| 天堂岛国av无码免费无禁网站| 永久综合精品网站在线免费观看| 99久久国产综合一区二区| 中文字幕第一頁亞洲| 亚洲国产精品久久99人人更爽| 国产精品亚洲视频一区二区三区| 国产欧美亚洲麻豆天堂第一页 | 免费+精品+国产| www久久久久久久久| 欧美激情国产一区二区13| 日韩精品成人免费观看视频| 2021av在线无码最新| 人妻美妇疯狂迎合系列视频| 久久久久久久99| 成人做爰黄AA片免费播放贝微微| 4虎影院永久地址WWW| 国产在线一区二区三区四区五区| 日本一区二区三区视频在线观看| 欧美+国产+极品| 成人国产精品久久久按摩| 野花成人免费视频| 中文字幕人妻少妇引诱隔壁| www日韩avcom| 久久久久久久岛国免费网站| 国产裸体舞一区二区三区| 精品国产av一区二区三区四区| 久久精品免费国产大片| 久久男人av资源网站无码软件| 中文字幕一区二区三区久久网站| 色视频免费在线观看| 免费在线观看视频一区二区| av网站高清在线免费观看| 国产女爽爽爽爽精品视频| 97无码精品综合| 91在线视频观看| 刘玥亚洲一区二区三区91久久| 国产日韩欧美在线一区二区三区| 久在线观看福利视频| 福利丝袜视频一区二区三区| 操老女人一区二区三区视频tv| 国产亚洲999精品aa片在线爽| 主播亚洲韩国一区二区黄片| 国产一区二区在线观看免费视频 | 亚洲欧洲成人a∨在线观看| 丰满少妇内射一区| 自慰系列无码专区| 亚洲+男人的天堂+一区二区 | 99精品国产99欠久久久久| 国产欧洲色婷婷久久99精品91| 欧美+国产+日韩在线| 最新国产成人av网站| 日本久久综合久久综合| 国产亚洲日韩在线a不卡| 双乳奶水饱满少妇呻吟免费看| 成人国产精品免费观看| 亚洲男人天堂一区在线观看| 野花视频最新免费| 少妇高潮喷水久久久影院| 西西4444www大胆高清图片| 美女一区二区三区网av| 国产三级在线免费观看| 动漫+有码+在线视频| 羞羞影院午夜男女爽爽在线观看| 色久悠悠婷婷综合在线亚洲| 久久婷婷五月综合色国产香蕉| 在线精品亚洲观看不卡欧| 国产精品高清尿小便嘘嘘主演| 粗大的内捧猛烈进出少妇| 69xxxxx中国女人| 国产精品九九九久久综合| 伊人精品久久久大香线蕉| 亚洲乱码国产乱码精品精姦| 99e久热只有精品8在线直播| 视频区另类中文字幕欧美日韩| 日本一卡2卡3卡4卡无卡免费网站| 双乳奶水饱满少妇呻吟免费看| 欧美孕妇孕交xxx| 久久国产午夜精品理论片| 无码区日韩特区永久免费系列| 国产精品国产三级在线...| 日产精品1区2区3区| 欧美又粗又大又硬久久久| 天堂在线免费观看视频www| 成在线人免费视频播放| 人妻共享互换多p| 中文字幕久久久人妻无码| 国产成人专区无广告在线| 国产精品一区波多野结衣| 日日噜噜夜夜狠狠视频免费bd| 在线欧美日韩制服国产| 91精品国产免费久久久久久| 欧美日韩黑人老熟妇中文字幕| 一区二区三区在线观看精| 国产欧美国产精品第一区| 五月婷婷激情小说| 亚洲综合一区和综合二区| 精品国产乱码久久久久久浪潮小说| 久久综合婷婷成人网站| 午夜激情一区二区| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解 | 久草香蕉在线视频国产乱码精品一区二区三上 | 亚洲一区二区美女在线观看 | 乱色国内精品视频在线| 久久久午夜精品理论片中文字幕| 久久www免费人成精品高清| 日本精品久久久久久| 国产成人最新三级在线视频| 91久久久久久久久久久久| 青青青国产手机在线观看| 国产激情久久久久熟女老人| 精品国产依人香蕉在线精品| 国产成人免费高清在线观看| 国产在线视欧美亚综合| 久久亚洲春色中文字幕久久久| 99久久综合狠狠综合久久AⅤ| 夜夜躁狠狠躁2021| 日韩欧美亚洲精品成人福利 | 亚洲中文字幕无码中字| 乱色熟女一区二区| 91av天堂在线观看视频| 日韩欧美一区二区在线| 国产丝袜在线精品丝袜不卡| 国产美女无套爽到高潮视频| 欧美又粗又长又色又猛视频| 在线欧美精品一区二区三区| 亚洲成人免费观看| 中文字幕在线看高清好看的电视剧| 国产欧美一区二区三区片| 久久天天躁狠狠躁夜夜网站| 色网站在线观看视频| 中文在线字幕免费观看电视剧大全| 成年人网站免费看| 欧美一区午夜精品久久福利| 香蕉视频在线播放| 日韩美女视频一区二区| 国产精品久久久久久久av福利| 西西444WWW无码视频男男| 篠田优人妻与黑人BD在线| 亚洲成在人线av品善网好看| 日韩一级片在线观看 | 国产亚洲Av人片在线观看| 天堂bt种子在线最新版资源| KTV女技师啪啪无套内谢| 中出あ人妻熟女中文字幕| 日韩中文字幕视频手机在线秒播 | 丁香啪啪综合成人亚洲小说| 日本一级理论片在线大全| 末成年毛片在线播放| 又黄又爽吃奶视频在线观看| 精精国产xxxx视频在线野外| 亚洲+精品+无码视频| 一区二区三区不卡在线观看| www国产+欧美| www.少妇影院.com| 国产探花视频在线观看网址| 国产三级视频播放线观看| 妺妺窝WWW仙踪林粗大野| 欧美孕妇孕交xxx| 中文国产成人精品久久一区| 精品久久久久久久久免费视频 | 欧美午夜一区二区福利视频| 人妻精品一区二区三区| 97国产线视频在线观看| 欧美日韩大片中文字幕在线观看 | 亚洲国产一区二区波多野结衣| 国产少女免费观看高清电视剧大全可 | 日韩欧美亚洲综合久久影院| 被老师粗大jib捣出了白浆视频 | 亚洲成av人片一区二区三区| 国产理论视频在线观看| 亚洲+国产+专区| 精品蜜臀av在线天堂| 国产成人精品午夜福利女同| 欲色影视天天一区二区三区色香欲 | 在线亚洲综合欧美网站首页| 99久久精品免费国产亚洲| 重庆美女揉BBBB搡BBBB| 六月丁香婷婷综合| 国产精品一区二区久久| 乖灬舒服灬别拔出来灬男男| 2022色婷婷综合久久久| 丁香啪啪中文字幕亚洲人成一区| 国产熟女毛多水大高潮| 13一16女处被毛片视频| 最新黄色在线观看一区二区三区 | 国产又黄无遮挡在线观看| 国产女人18毛片水真多成人如厕 | 99re在线视频这里只有精品 | 乱码一区二区三区水牛| 99热久久最新地址| 日韩精品人妻无码久久影院| 国产精品国产三级国av麻豆| 丰满大乳奶做爰ⅩXX视频| 中文字幕+中文字幕在线| 老A视频精品无码视频| 少妇精品揄拍高潮少妇| 一本色道婷婷久久欧美| 成人免费一区二区国产精品| 日韩人妻无码一区二区三区综合 | 国产精品国产av国产三级| 亚洲一区二区影视| 狠狠色噜噜狠狠狠狠2022| 亚洲男女羞羞无遮挡久久丫| 丰满大爆乳波霸奶| 《与上司疯狂做爰》| 精品96久久久久久中文字幕无| 亚洲精品第一国产综合野| 9l国产精品久久久尤物av| 色噜噜www亚洲男人天堂| 国自产拍偷拍精品| 五十路豊満な肉体无码| 日韩欧美精品一区在线观看| 精品国产乱码一区二区三区小黄书| 337P粉嫩大胆噜噜噜55569| 国产成人三级三级三级97| 亚洲影院中文字幕| 香蕉视频在线观看国产婷婷| 国产乱人伦精品一区二区在线观看 | 宅男66lu国产在线观看| 人人爽人人奭人人片AV| 日韩毛片+18+成人网| 亚洲中文无码av永久| 免费人成视频19674不收费| 亚州国产av一区二区三区伊在 | 91精品视频一区二区三区| 四虎+网站+影院+网站| 国产成人综合欧美精品久久| 人妻无码系列一区二区三区| 国产精品一二三在线| 日韩人妻无码中文字幕视频| 成人午夜在线播放| 国产精品成人av在线观看春天| 国产乱淫av片杨贵妃| 97午夜理论片在线影院| 亚洲综合色aaa成人无码| 亚洲国内精品自在线影院牛牛 | 亚洲а∨天堂+久久精品| 中文字幕+下载+人妻| 欧美巨大xxxx做受中文字幕| 青青草草青青草久久草| 亚洲人成在线播放网站岛国| 成人+网站+日韩毛片| 亚洲日韩欧美视频| 国产精成a品人v在线播放| 99re在线观看视频在线观| 欧美日韩盗摄一区二区三区| 亚洲美女高清无水av| 一本色道久久综合亚州精品蜜桃| 韩国美女一区二区在线观看视频| 2021年国产精品自线在拍| 人妻无码熟妇乱又伦精品视频 | 久久人人97超碰caoporen| 韩国国内大量揄拍精品视频| 黑人巨鞭波多野结衣| 又粗又黄又猛又爽大片免费 | 北条麻妃大战黑人无码| 综合久久久一区二区三区| 麻豆ā片免费观看在线看| 日韩激情一区二区三区| 高清不卡二卡三卡四卡免费| 午夜精品一二三区| 又大又粗又硬又爽黄毛少妇| 四虎影视1515hhc0m| 久久久精品小视频| 97成人做爰a片无遮挡直播| 国产人成视频免费在线观看| 亚洲欧洲成人a∨在线观看| 18禁国产精品久久久久久网站| 久久久久国产一区二区三区不卡| 欧美人伦禁忌dvd放荡欲情| les欧美xxxxvideo| 99热精品国产三级在线观看| 日本成人美女在线视频网站| 亚洲精品国产主播在线三区 | 婷婷激情五月天综合丁香社区| www.香蕉视频| 黑人3p波多野结衣之皇| 美女网站免费福利视频| 国产寡妇精品久久久久久| 欧美在线观看免费播放视频| 香蕉视频在线免费看| 天干夜啦天干天干国产免费| 欧美精品国产精品日韩系列 | 999精品视频在线| 欧美精品欧美极品欧美激情| 神马久久久久久久久久久| 国产三级国产精品专区50| 91看片淫黄大片91桃色| 国产又黄又大又爽| 茄子视频国产在线观看| 伊人久久精品无码麻豆一区| 精品国产依人香蕉在线精品| 中国国产免费毛卡片| 91最新视频在线观看网址| 亚洲精品国产自在现线最新| 无码人妻一区二区三区尽卡亚| 久久99热只有频精品8国语| 少妇激情av一区二区| 久久99精品国产麻豆| 日本三级带日本三级带黄| 97超级精品综合网| 顶级欧美熟妇xx| 欧美国产日韩第一页| 人妻av无码专区久久| yy6080久久亚洲精品| 久久亚洲春色中文字幕久久久 | 无码av无码一区二区桃花岛| 一区精品视频在线观看免费| 日韩av一二三四区| 婷婷丁香俺来也久久一区二区| 在线一区二区三区视频| 久久国产乱子伦精品免费女人| 91麻豆精品国产自产在线的| 久久国产乱子伦精品免费女人| 欧美精品国产精品日韩系列| 高清国产日韩黄色录像| 欧美激情精品久久| 久久久久亚洲精品国产日韩精品| 久久99+极品+中文字幕| 国产精品久久久精品影院| 成年美女黄网色视频免费4399| 99久热re在线精品视频| 亚洲综合伊人久久| 7788在线观看免费高清电视剧| 99在线精品国自产拍不卡| 色综合天天综合网国成人网| 国产又粗又黄又爽又硬网站| 色婷婷一区二区三区四区| 欧美日韩在线视频免费播放| 99在线成人精品视频| 亚洲国产欧美人成| 丰满少妇被粗大的猛烈进出视频| 97久久免费视频| 欧美在线视频免费播放| 久久中文字幕人妻熟av| 国产免费不卡的在线视频| 国产免费观看高清电视剧在线观看| eeuss鲁片一区二区三区| 国内揄拍国产精品| 精品国产一区二区av麻豆| www.五月婷婷.com| 中文字幕网视频一区在线观看| 做受不用下载在线观| 日韩欧美精品一区二区三区四区 | 久久久久久久久久99精品| 特级西西444www大胆免费看| 中文字幕一卡二卡三卡| 国产欧美日韩精品一区二区蜜臀 | 亚洲高清无码视频| 青草影院内射中出高潮| 亚洲色图欧美另类中文字幕 | 18+在线视频观看| 国产高清免费在线观看精品| 亚洲国产精品一区第二页| 日韩高清特级特黄毛片| 亚洲国产精品av在线播放| www日本com| 日韩一级二级视频| 日本精品videosse×少妇 | 国内精品人妻无码久久久影院| 久久久99无码一区| 女人被狂躁到高潮喷水| 精品人妻伦一二三久久18禁| 国语少妇私密推油S卩A视频在线| 国产精品原创av| 欧美乱子伦一区二区三区| 久久综合狠狠狠综合图片| 日日摸夜夜添夜夜添无码免费视频| 美女诱惑一区二区| 久久精品无码中文字幕| 视频在线一区二区| 亚洲国产中文一区二区99re| 国产又大又猛又粗视频在线观看| 久久久久久九九99精品| 国产成人午夜福利高清在线观看 | 天堂影院在线观看一区二区亚洲| 中文字幕欧美亚洲视频免费 | 午夜国产福利小视频在线| 成人做爰100部片需要多少钱| 奶水人妻freeHDXⅩXX| 扒开女人内裤猛进猛出流出白液| 久久精品成人欧美大片| 最近中文字幕免费观看视频| 天堂√最新版在线| 日韩精品久久无码中文字幕| 素人fc2av清纯18岁| 国产+高潮+真人| 一本到综在合线伊人| 亚洲制服国产丝袜综合四季av| 亚洲欧美中文字幕在线观看| 国产精品视频色尤物yw| 国产又黄又粗无遮挡全黄色视频| 日本无码一区二区| 妺妺窝WWW仙踪林粗大野| 高潮+国产+喷水| 女人17片毛片90分钟| 五十路豊満な肉体无码| 台湾av+在线播放| 国产99精品最新在线播放| 中文字幕+乱码+在线观看| 亚洲欧美综合精品另类天天更新 | 久久精品av一区二区三| 91在线精品亚洲一区二区免費資訊| 妺妺窝人体色www在线小说| 91日本人妻精品一区二区| 久久国产精品午夜福利看片| 国产亚洲精品福利视频在线观看 | 亚洲综合国产精品第一页| 欧美专区日韩视频人妻| 成都私人高清影院的市场前景| 国产欧美二区综合| 337p日本大胆欧久久| 亚洲处破女av日韩精品| 日本入室强伦轩人妻HD| 国产乱人乱品精一区二区三区 | 国产成a人片在线观看麻豆| 亚洲国产精品一区二区制服换脸| 午夜福利精品视频免费看| 久久久精品午夜免费不卡| 女人扒开腿婬乱A片| 色欧美福利视频看看午夜| BBBBB女女女女BBBB| 欧美国产高清在线一区二区| 久久精品国产免费观看三人同眠| 日本欧美一级aaaaa毛片| 亚洲日韩av一区二区三区四区 | 成人做爰A片免费看网站草莓| 亚洲欧美激情另类图片小说| 亚洲+日韩+专区| 91日本人妻精品一区二区 | 欧美天堂在线视频| 日韩欧美AⅤ综合网站发布| 美女主播一区二区不卡视频| 欧美三级欧美成人高清www| 久久综合88中文字幕| 老色鬼久久亚洲av综合1| 国产精品亚洲欧美一区二区 | 出差+无码+thunder| 国产成人一区二区三区在线播放| 天天干天天干天天干| 亚洲欧美日韩综合在线免费观看| 亚洲国产精品va在线看黑人| 人妻丰满熟妇av无码区不卡| 国产精品vr虚拟专区| 国产欧美日韩一区二区国内| 国产极品久久7777777| 小俊┅┅快┅┅用力啊┅警花少| 亚洲国产成人久久一区二区三区| 国产免费a∨片在线观看不卡| 国产一级特黄毛片在线毛片| 久久精品+中文字幕+有码 | 国产一区二区三区在线看麻豆| 久久国产午夜精品理论片推荐 | 75歳の熟女セックス合集牛牛| 自拍亚洲欧美日韩一区二区三区| 强奷乱码中文字幕熟女导航| jizzjizz在线| 桃子视频在线观看免费视频网| 深夜影院在线观看| 五十路豊満熟女のお婆ち在线播放| 亚洲精品国产精品国自产小说| 老司机在线精品视频网站| 黄色成人av网站| 国产欧美日韩一区二区国内| 亚洲精品一区久久久久| 337p日本欧洲亚洲大胆| 爆乳喷奶水无码正在播放| 西西444WWW无码视频男男| 亚洲国产精品第一区二区 | 日韩三级视频在线观看| 国产一级做a爰片久久毛片男| 免费观看mv大片高清| 国产粉嫩呻吟一区二区三区| 日韩人妻无码一区二区三区综合| 亚洲精品午夜无码成人| 免费人成视频x8x8日本| 无码av无码一区二区桃花岛| 强迫凌虐淫辱の牝奴在线观看| 日本高清中文字幕一区二区三区| 国产对白叫床清晰在线播放图片 | 日本精品婷婷久久爽一下| 91香蕉精品在线观看视频| 国产精品人成视频免费软件| 香蕉视频在线免费看| 国产精品视频在视频| 欧美+国产+中文| 人妻无码一区二区19p| 久久久久国色av∨免费看| 蜜桃传媒人版在线观看免费| 国产欧美日韩一区二区三区在线 | 久久黄色免费视频| 秘书奶咪子真大高H乳夹| 苍井空一级婬片A片AAA片动漫| 欧美a中文字幕在线播放| 国产精品一区二区含羞草| 最近最新中文字幕大全直播| 妖精视频一区二区| 欧美+香蕉网+五月| 日韩中文在线字幕| 97精品一区二区视频在线播放| 亚洲成av人片天堂网站| 欧美亚洲日韩在线在线影院| 99久久免费精品国产免费…| 中文字幕+在线观看+永久| 97午夜理论片影院在线播放| 在线观看国产视频| 亚洲视频一卡二卡三卡四卡| 偷偷要色偷偷中文无码| 午夜福利+麻豆+国产| 国产精品1000夫妇激情啪| 男女啪啪激情视频免费观看国产| 成人小视频免费看| 无码人妻一区二区三区尽卡亚| 亚洲乱码日产精品bd在观看| 99国产精品久久久久老师| 中文字幕高清在线| 亚洲熟妇av一区二区三区痴汉| 精品一区二区国产免费av| 中文字幕大看蕉在线观看| 破了亲妺妺的处免费视频国产| 91亚洲视频在线免费观看| 九九热这里只有精品6| 亚洲+日韩+欧美在线观看| 亚洲十八禁深夜福利| 国产日韩在线欧美一区二区| 国产成人精品一区二三区四区五区 | 麻豆国产av剧情偷闻女邻居内裤| 天天av影院免费看| 粗大的内捧猛烈进出视频| 国产高清av免费在线观看| 国产极品美女到高潮| 丰满成熟熟妇乱又伦精品| 中文免费高清在线观看电视剧| 国产av一区最新精品| 国产伦精一品二品三品app| 波多野结衣《温泉人妻》| 成年日韩片av在线网站| 亚洲日本在线观看| 在线观看一区二区三区少妇| а√天堂+地址+在线| 亚洲+熟女+丝袜| 97久久综合区小说区图片区| 中文久久乱码一区二区| 久久久精品视频网站| 最近最新mv字幕免费观看| 国产又爽又猛又粗的视频a片 | 精品日韩一区二区五月天| 久久国产乱子精品免费女| 波多野无码肉欲HD| 日本乱子伦一区二区三区| 在线观看免费高清视频大全追剧| 精品一区精品二区| 日日碰狠狠添天天爽五月婷| 国产精品免费观看调教| 欧美经典影片视频欧美一级网站| 91女人18片女毛片60分钟| 一级全黄裸体免费观看视频| 琪琪在线影院电视剧免费| 一卡二卡亚洲视频在线观看| 国产91精品欧美| 国产激情99精品久久一区二区| 中文字幕欧美成人免费| 国产精品激情在线观看| 久久99热只有精品首页| 日韩+欧美+毛片| 18+视频在线看| 中文字幕第一区综合| 欧美日韩国产高跟丝袜后入| 成人+免费+真人视频| 北条麻妃99精品久久朝桐光| 亚洲日本制服丝袜诱惑在线 | 日韩成人无码毛片一区二区| 亚洲男人天堂一区二区在线观看 | 亚洲乱码国产乱码精品精不卡| 日韩av在线一区二区三区| 免费大香伊蕉在人线国产| 杨思敏高圆圆三级做爰| 殴美亚洲精品182| 夜鲁夜鲁狠鲁天天在线| 久久天天躁狠狠躁夜夜97| 中文字幕丰满乱子无码视频 | 韩国三级l中文字幕无码| 国产精品久久久久久超碰| 伊人69久久久久久综合国产| 亚洲欧美日韩一区二区三区在线| 亚洲?V无码成人动漫无遮挡| 国产午夜夜伦鲁鲁片| 国产欧美日韩一区二区刘玥| 在线观看亚洲天堂视频网站| 男人的天堂亚洲中文字幕| 97在线播放免费观看全集电视剧 | 多人玩弄波多野结衣| 欧美精品videossex少妇| 免费视频永久免费人| 嫩草欧美曰韩国产大片| 欧美一区二区日韩| 国产黄片视频主播在线观看| 成人免费国产精品视频| 国产成人精品免费视频| 不卡视频一区二区三区| 护士被黑人狂躁A片| 精品国产91久久久久久动漫| 护士洗澡被狂躁A片在线观看| 夜夜国产一区+1080p| 亚洲一级福利专区成人在线视频| 国产精品一级AA毛片不收费 | 全免费a级毛片免费看视频| 四虎成人影视8848亚洲| 妺妺窝人体色777777小馒头| 久久婷婷五月综合色和啪| 亚洲国产精品婷婷| 日本中文字幕在线不卡视频一区| 日本一级待黄大片| 国产乱码一区二区三区观看| 狠狠色婷婷久久综合频道日韩| 一区二区福利视频| 亚洲精品国产自在现线最新| 午夜福利理论片高清在线观看| 美女+国产+免费| 国产精品尤物铁牛tv| 中文字幕av网页观看日韩| 欧美日韩中文字幕久久久不卡| 久久www免费人成人片| 东京亚洲女图片在线观看| 超碰夫妻91无码免费播放器| av无码精品一区二区三区三级| 久久伊人色av天堂九九| 国产成人在线视频网站| 精品丝袜国产自在线拍小草| 久久久久青草线蕉综合超碰| 中文文字幕一区二区三三| 四川寡妇搡BBB爽爽爽| 免费观看mv大片高清| 国产无套内谢普通话对白91| 亚洲+精品+欧美| 久久精品女人的天堂av| 又爽又黄无遮挡高潮视频网站 | 亚洲无AV在线中文字幕| 国产色乱码一区二区三区| 欧美v欧美v视频在线观看视频| 亚洲一区在线免费| 午夜在线不卡精品国产| 午夜成人理论福利片| 久久综合精品视频| 91精品国产麻豆久久久久久| 日韩国产有码精品一区二在线| 三级高清日本久久| 一个人看的视频+www+动漫 | 国产一区不卡视频在线播放| 欧美激情精品久久久久久| 91偷自产一区二区三区精| 在线观看免费高清电视剧推荐| 91在线精品播放| 人人躁日日躁狠狠躁av| 国产伦理五月av一区二区| 亚洲一区二区三区乱码av麻逗| 国产亚洲精品久777777| 国产美女在线观看| 麻豆Chinese新婚XXX| 精品国产综合区久久久久久小说| 国产农村妇女精品一二区| 久久婷婷色综合老司机| 真人女处被破69x176cc| 奇米影视亚洲春色| 91丨porny丨国产麻豆| 台湾亚洲精品一区二区tv | 国产午夜精品一区二区三区| 国产精品成人免费久久黄av片| 国产一区日本二区在线观看| 国产精品久久久久久婷婷| 久久久99久久久国产自输拍| 国产在线看片免费观看| 国产高潮女主播视频一区| 午夜看片在线观看| 中文字幕在线日韩| 亚洲一区二区久久久| 成人免费淫片aa视频免费| 免费播放电视剧的| 久久亚洲精品小早川怜子 | 亚洲精品一区久久久久久| 国产精品亚洲精品一区二区| 午夜久久久久久久| 国产一区二区三区撒尿在线| 日本老熟欧美老熟妇| 国产成人精品精品日本亚洲| 婷婷涩嫩草鲁丝久久午夜精品| 无码色情巜肉欲办公室3| 日韩一级二级视频| 京熱大亂交无碼大亂交| 国产女爽爽爽爽精品视频| 亚洲精品日韩一区二区小说| 我要看欧美一级黄色录像| 成人羞羞国产免费软件小说| 日本一卡二卡不卡视频查询| 欧美激情伦理一区二区三区| a级老太婆毛片老太婆毛片| 国产午夜精品18久久蜜臀董小宛| 6090新视觉理论电视剧4410yy| 中文字幕av一区二区三区ay| 欧美激情精品久久| 大香蕉在线视频观看75| а√天堂资源中文最新版地址| 在线观看视频中文字幕| 91久久久久久亚洲精品蜜桃| 成人欧美一区二区三区在线观看 | 97无码精品综合| 久久亚洲精品国产精品紫薇| 成人网站国产在线视频内射视频| 日韩无码中文字幕| 久久精品亚洲精品国产色婷| 日韩欧美成人网站| 91成人在线视频| 国产国产午夜精华| 国产成人久久精品二区三区| 2021av在线无码最新| 中文字幕一区二区三区5566| 强开小婷嫩苞又嫩又紧韩国视频| 国产精品久久..4399| 99久久国产自偷自偷免费一区| 熟睡人妻被讨厌的公侵犯深田咏美| 大地资源中文第二页日本| 亚洲男人天堂一区二区在线观看| 国产免费不卡av在线播放| 狠狠精品久久久无码中文字幕| 日韩毛片+18+免费看| 男女猛烈激情xx00免费视频| 色综合天天综合欧美综合| caoporn+视频| 久久www免费人成人片| 一区二区三区欧美| 精品美女www爽爽爽在线| 久久99这里只有精品| 黄色av网址在线| 国产91麻豆一区二区在线| 黄页免费视频网站国产一区| 在线观看片免费人成视频播放| 四川少妇BBBBBB爽爽爽欧美| www.黄片.com| 日韩成人av在线播放| 国产免费观看高清电视剧| 色一情一区二区三区四区+国产| 欧美日韩在线视频免费播放| 韩国真做片在线观看国产初高中生videos | 亚洲国产精品一区二区久久阿宾| 国产+日韩+欧美| 四虎成人精品永久网站| 天海翼+无码+磁力| 麻豆国产尤物av尤物在线看| 欧美一级一级一级| 免费+国产+麻豆| 激情国产欧美一区二区三区| 中文字幕+乱码+中文在线| 久久人人爽天天玩人人妻精品| 五十路豊満な肉体无码| 77777亚洲午夜久久多人| 日本欧美一区视频在线观看| 欧洲中文字幕日韩精品成人| 91亚洲国产成人精品久久久 | 国产一线二线在线观看| 51妺妺嘿嘿午夜成人A片| 日韩欧美在线精品| 日韩在线看片免费人成视频播放| 欧美成人aaaa免费全部观看| 久久男人av资源网站无码软件 | 国产麻豆亚洲欧美高清一区二区| 民工粗大的茎弄得我好爽视频| 午夜福利啪啪体验区| 香蕉久久av一区二区三区app| 久青青在线观看视频国产| 久久精品国产一区二区| rmvb+下载+1080p| 国产欧美日韩高清在线不卡| 亚洲国产日韩欧美在线播放| 亚洲国产日韩欧美在线播放| 中文文字幕一区二区三三| 久久只精品99品免费久23| 亚洲一区二区三区国产| 一区二区三区日韩欧美| 欧美专区日韩视频人妻| 国产成人精品综合| 天海翼torrent+下载| 制服丝袜在线视频| 一区二区三区国产精| 亚洲成AV人片一区二区密柚| 国外av片免费看一区二区三区| 久久国产乱子伦精品免费乳及 | 久久精品国产免费看久久精品| 免费精品视频在线观看| 中国老熟妇在线视频| 熟妇乱子伦海角社区| 视频+国产+免费| 97视频人人澡人人爽| 少妇一级淫免费放| 小蜜被两老头吸奶头在线观看| 黄网站在线免费永久观看| 美女日批视频在线观看| 久久天天躁狠狠夜夜躁2020| 国产精品久久久久不卡绿巨人| 日韩精品一卡2卡3卡4卡新区| 精品无码成人片一区二区98| 漂亮少妇高潮a片xxxx| 中文字幕+乱码+中文字幕在线观看 | 国产一级中文字幕在线观看 | 二区视频在线观看| 四川乱子伦农村露脸| 一个人在线观看国产精品www| 成人国产热播资源| 精品日韩国产一区二区三区| 中文字幕在线视频第一区二区| 免费日本A片在线看| 欧美成人+www+一区二区| 美女视频图片久久黄网站| 亚洲+视频+久久| 欧美激情国产一区二区13 | 国产主播户外勾搭人xx| 一道本av免费不卡播放| 国产无套抽出白浆来| 亚洲国产精品第一区二区| 51妺妺嘿嘿午夜成人A片| 日韩+成人+自拍| 久久国产精品免费久久久| 欧美三级韩国三级日本播放| 天天澡天天狠天天天做| 在线观看+成人免费视频+不卡 | 中文字幕一区二区三区久久人妻| 国产欧美成人xxx视频| 国产精品区一区二区三| 最近在线更新8中文字幕免费| 亚洲精品久久66国产高清| 国产乱xxxxx97国语对白| 女人特黄大aaaaaa大片| 天堂aⅴ无码一区二区三区 | 久久久久人妻一区二区三区VR | 国产99视频精品免费观看9| 成年人在线视频观看| 欧美日韩无套内射另类| 国产+免费+白浆| 黑人搡BBBBB搡BBBBB| 久久久噜噜噜久久中文字幕色伊伊| aⅴ网站在线观看| 国产成人精品视频国模| 涩涩涩蜜桃日韩一区二区| 亚洲国产视频在线观看| 亚洲va欧美va国产综合久久| 国产偷人妻精品19p| 国产第一页浮力影院草草| 日本三级欧美三级人妇视频黑白配| 日韩高清在线亚洲专区小说| 欧美大片18禁aaa片免费| 又粗又紧又湿又爽的视频| 日本一区二区最黄最色视频| 4虎影院永久地址WWW| 久久久91精品国产一区二区精品| 伊人国产精品影院在线观看| 欧美大片18禁aaa片免费| 国产成人尤物在线视频| 尤物在线观看网站视频免费播放| 欧美不卡高清一区二区三区| 欧美精品一区二区三区蜜桃臀| 国产精品―色哟哟| 国产精品无套粉嫩白浆在线| 真实乱偷全部视频| 日韩欧美三级在线| 国产伦精品一区二区三区妓女原神| 美女黄色视频网站入口在线看| 最新在线精品国自产拍福利| www国产国人免费观看视频| 国产+欧美+亚洲视频| 黄页免费观看一区二区三区| 91麻豆精选国产自产免费观看 | 国产精品久久久久久影院| 亚洲av色噜噜噜久久久女同| 成人免费视频国产免费麻豆| 日韩精品成人免费观看视频| 五月天丁香婷婷亚洲综合一区| 久久99热只有频精品6狠狠| 污黄啪啪网18以下勿进免费的| 精品人妻久久久久久888| www国产+欧美| 欧美在线播放一区二区欧美馆| 亚洲暴爽av人人爽日日碰| gogogo免费完整国语| 久久精品国产亚洲精品| 中文字幕+欧美+日韩| 亚洲精品国产主播在线三区| 国产精品自在拍首页视频8| 欧美一级特黄AAAAA片大水| 国产又爽又粗又猛的视频| 国内精品伊人久久久久影院麻豆| 精品蜜臀av在线天堂| 欧美日本亚洲视频一区二区| 色婷婷一区二区三区av免费看| 日本免费一级特黄⊙大片欧美 | 女神呻吟娇喘高潮毛片| 亚洲欧美日本在线观看视频| 国产99视频精品免视看芒果| 一本大道中文日本香蕉| 欧美成人精品在线播放免费| 亚洲AV人无码激艳猛片| 日韩视频无码免费一区=区三区| 国产+日本+在线观看| 亚洲AV成人噜噜无码网站 | 四虎+网站+影院+网站| 欧美大片18禁aaa片免费| 开心五月激情五月俺亚洲| 国产亚洲人成网站观看| 熟妇人妻无乱码中文字幕蜜桃| 午夜福利影院私人爽| 骚虎成人免费99xx| 麻豆Chinese新婚XXX| a级老太婆毛片老太婆毛片| 国产高清狼人香蕉在线| 欧美一区二区三区人妖视频| 欧美乱码精品一区二区| 久久国产精品久久喷水| 年轻内射无码视频| 合不拢腿(双)by粗眉毛免费朗读| 日韩久久久久久久久久久 | 亚洲大尺度无码无码专区| 中文人妻av久久人妻水密桃| 国产黄色片网站大全| 亚洲第一毛片18我少妇| 91丨九色丨尤物| 精品国产乱码一区二区三区小黄书| 日韩a人毛片精品无人区乱码| 久久精品国产自清天天线| 亚洲无线观看国产精品| 久久久精品国产免费观看一区二区| 国产精品99久久免费| 成在人线Aⅴ无码免费高潮水| 授乳喂奶av中文在线| 巨茎人妖videos另类| 亚洲日本一区不卡在线观看| 99精品视频99| 日韩中文字幕国产| 亚洲欧美日韩国产91在线| 无码成人AAAAA毛片AI换脸| 日韩欧美在线一级| 久久久久青草线蕉亚洲麻豆| 国内精品人妻无码久久久影院| 日韩毛片+18+免费看| 国产欧美精品一区| av天堂东京热无码专区| 欧美+日韩+成人| 欧美xxxx做受欧美1314| 久久久亚洲精品成人| 精品欧美一区二区三区免费观看 | 午夜影院亚洲大码免费| 亚洲一区二区三区四区在线播放| 人妻黑人一区二区三区| 九九热这里只有精品6| 青青草+深夜福利+免费观看| 日韩亚洲欧美中文高清在线| 亚洲AV无码一区二区二三区∝| 婷婷激情偷拍在线| www.香蕉视频| 182国产精品视频 | 国产又粗又黄的视频免费| 国产精品老女人精品视频| 久久成人免费网站| 国产欧美一区二区三区片| 中文精品人妻素人一级片| 亚洲已满18点击进入在线看片| 久久婷婷六月综合国产激情ai| 天堂网www在线最新版资源| 亚洲婷婷天堂在线综合| 少妇做爰又色又紧夜视频| 国产精品69久久久久不卡| 综合影视中文高清| 爽爽爽爽成年网站在线观看| 狠狠躁夜夜躁人人爽天天不| 久久精品亚洲精品国产色婷| 高潮+刺激+爽av| 国产精品视频一区二区在线观看| 四虎精品在线播放| 国产传媒中文字幕在线观看| 亚洲桃色在线播放国产精品| 女人17片毛片90分钟| 久久中文字幕av一区二区不卡| 在线观看国产免费的电视剧| 欧美xxxx免费虐| 日日碰狠狠添天天爽超碰97| 中文字幕少妇欧美高潮迭起| 三年在线观看大全免费高清| 激情视频免费在线观看| 日韩黄a三级三级三级看三级少妇| 色拍自拍亚洲综合图区| 8090成人午夜精品无码| av最大免费网站在线观看| 久久久久久亚洲精品成人| 草草久久97超级碰碰碰| 丰满成熟熟妇乱又伦精品| 国产偷人妻精品一区| 动漫无遮挡羞视频在线观看| 国产成人av乱码免费观看| 66国产在线一区二区三区| 免费观看四虎国产精品午夜| 欧美+日产+专区| 一区二区三区日韩亚洲中文视频| 337p日本欧洲亚洲大胆在线| 人摸人人人澡人人超碰手机版| 蜜桃视频一区二区三区在线观看| 国产精品久久久久久久福利| 欧美亚洲国产精品第一页| 欧美精品黄片一区二区三区| 国产+在线+超碰| 影音先锋+在线+2| 国产在线高清精品二区| 精品一区二区三区自拍图片区| 黄色成人在线视频| 久久精品无码中文字幕| 天堂网www在线资源网| 久久国产自偷自偷免费一区调 | 国产人妻大战黑人20p| 最近2019年中文字幕视频| 天天摸天天摸色综合舒服网| 国产精品视频一区二区在线观看| 无码人妻丰满熟妇啪啪网站| 国产乡下三级全黄三级bd| 色视频网站一区二区三区 | 狠狠狠综合7777久夜色撩人 | 亚洲狠狠婷婷综合久久久久图片| 欧美日韩无套内射另类| 久久视频免费在线观看| 93国产精品久久久久久| 国产成人精品久久二区二区四季| 免费的短视频app大全下载安装| 中文字幕一区二区精品区| 久久国产乱子精品免费女| 视频久re精品在线观看| 亚洲精品久久久97精品久久久久亚洲午夜 | 欧美日韩不卡在线视频| 中文日本字幕mv在现线观看| 91精品国产综合久久久蜜臀九色| 国产精品久久久91| 欧美做爰全过程免费观看| 精品免费国产一区二区三区四区介绍| 精品美女一区二区| 99在线视频一区二区三区| 国产毛片久久久久久久18| 三级慰安女妇威狂放播| 午夜福利天堂一区二区在线观看| 亚洲精品久久久久久久久久久| 精品视频无码一区二区三区| 欧美牲交a欧美牲交aⅴ一| 久久久青青草亚洲成人av| 一边吃奶一边添p好爽故事| 伦理片国产精品久久一国产精品| 国产又大又猛又粗视频在线观看 | 亚洲欧美国产综被窝蜜臀 | 人妻ⅰapanfreehd人妻| 黄片久久久久久久黄片久久| 国产美女内射啊啊高潮在线网页| 老司机久久精品视频| 亚洲欧美日韩国产成人精品影院| 天堂网一区二区三区| 夜夜爽8888免费视频| 国产av综合第1页| 妺妺窝人体色77777777| 一个人免费视频www在线观看| 国外av片免费看一区二区三区| 狠狠躁天天躁无码中文字幕图| 成人午夜在线播放| 久久99精品久久久久久清纯| 久久精品国产一级特黄片| 国产精品99久久久网站| 男女猛烈激情xx00免费视频| 精品久久久久中文字幕app| 中文字幕av网页观看日韩| 97无码精品综合| 丁香花在线影院观看在线播放| 视频一区国产第一页| 色噜噜狠狠色综合日日| 日本丰满人妻久久久久久| 久久精品国产乱子伦| 精品一区二区三区影院在线午夜| 色色色色色五月丁香婷婷| 成人做爰A片免费看黄冈白狐影院| 日韩精品+久久久+免费观看| 国产精品污污在线观看入口| 国产无遮挡又黄又大又不要vip| 四虎视频在线精品免费网址| 99久久久国产精品免费99| 精品日韩国产一区二区三区| 91看片淫黄大片91桃色| 91久久婷婷国产一区二区| 国产偷人妻精品一区| 国产欧美日韩丝袜在线视频| 天堂资源中文最新版在线一区| 无码区日韩特区永久免费系列| 多人玩弄波多野结衣| 亚洲Av无码一区二区三区天堂| 国产成人午夜片在线观看高清观看 | 女人18片毛片90分钟| 日韩欧美在线第一页| 亚洲ⅴa欧美ⅴa人人爽久| 亚洲精品久久久久久婷婷| 国内精品久久久久影院薰衣草| 菠萝蜜影院免费播放电视剧软件| 91香蕉视频国产在线观看| 热久久这里只有精品| 黄色网页在线播放| 精品123区免费视频国产成人 | 婷婷五月在线视频| 日韩+国产+欧美| 色欲AⅤ亚洲情无码AV蜜桃 | 欧美成人福利视频| 国产另类xxxx| 国产又黄又爽又色的免费| 国产日本久久久久久久久婷婷| 免费无遮挡在线观看视频网站 | 亚洲精品一区二区三天美| 日本不卡在线观看免费v| 中文字幕网视频一区在线观看 | 无码人妻精品一区二区三区久久久| 狠狠狠色丁香综合婷婷久久| 制服丝袜在线视频| 99精品国产综合久久久久五月天| 亚洲国产精品97久久无色| 日本中文字幕中出在线| www.17c嫩嫩草色蜜桃网站| 国产精品美女久久久久AV福利 | 天堂视频在线免费观看| 中文字幕精品亚洲无线码vr| 91在线喷水白浆| 色网站在线观看视频| 欧美高清美女视频一区二区三区 | 国产精品污污网站在线观看| 国产精品人人爽人人做av片| 在线观看视频中文字幕| 亚洲精品久久酒店| 2019久久视频这里有精品15| 国产免费一级毛卡片AAAAAA级| 小视频免费在线观看| 老a影视精品无码视频| 国产欧美精品一区二区三区三| 国产精品自产拍100在线观看| 好男人日本社区www| 亚洲+视频+久久| 亚洲精品国产精华液| 国产成人精品18禁三区| 500部大龄熟乱4K视频| 亚洲欧美另类综合| 欧美超猛烈一区二区三区| 国产在线精品一区二区夜色| www.四虎.com| 亚洲精品国产中文字幕在线| 国产国拍精品av在线观看| 天堂а√在线中文在线新版| 98av精品一区二区三区| 天天综合亚洲综合网天天αⅴ| 浙江妇搡BBBB搡BBBB| 亚洲激情在线视频| 欧美+日韩+在线高清| 国产女精品视频网站免费| 欧美成人午夜一卡二卡在线视频| 精品一区二区三区四区视频观看| 韩国做aj的视频大全| 日韩av大片在线观看| 宇都宫+无码+迅雷| 中文字幕一卡二卡三卡| 日韩一区二区视频| 懂色av绯色av密臀av| 亚洲欧美日韩中文播放| 亚洲欧洲国产成人综合在线| 妈妈你真棒插曲mv在线观看免费| 精精国产欧美一区二区三区| 中文字幕+日韩在线视频| 天堂视频中文在线| 国产真人真事毛片| 国产乱码一区二区三区观看| 日本在线观看一区| 伊人久久大香线蕉综合bd高清| 极品s级大美女国产精品| 成人在线午夜视频| 亚洲精品午夜无码成人| 天堂影院在线观看一区二区亚洲| 国产高清免费在线观看精品| 综合激情丁香久久狠狠| 18禁美女国产精品久久久久久| 国产精品一级AA毛片不收费| 一本一久本久a久久精品综合| 中文国产成人精品久久一区| 18+少女+日韩毛片| 无码专区人妻丝袜| 久久精品aaaaaa羞羞羞| 午夜乱蜜桃久久久乱| 亚洲国产91福利在线播放| av天堂午夜精品一区二区三区| 欧洲美熟女乱又伦免费视频| 日韩国产欧美综合| 深夜福利1区2区3区欧美| 小俊┅┅快┅┅用力啊┅警花少| 深夜福利小视频在线观看| 久久久久久老熟女国产999| 一区二区三区日韩中文字幕欧美| 茄子视频ios在线观看| 国产免费一级淫片a级中文 | 日本人妻丰满熟妇www色| 成人做爰黄AA片免费看李晨视频| 草草久久97超级碰碰碰| 91丨porny丨国产麻豆| 午夜国产精品久久久久久| 秋霞熟妇久久久精品免费| www久久久久久久久| 2021国产精品午夜久久| 欧美日韩精品亚洲色图视频免费| 99精品视频在线观看婷婷| 美里麻衣无码番号| 午夜日本永久乱码免费播放片| 欧美精品v欧洲高清视频在线观看 中文字幕精品久久久久人妻 | gogo人体做爰大胆视频| 色偷偷偷久久伊人大杳蕉| 久久受www免费人成| 色欲AV伊人久久大香线蕉影院| 又爽又黄无遮挡高潮视频网站| 一个人视频在线观看www中文| 亚洲中文无码mv| 亚洲国产精品综合久久网各| 欧美一区二区三区人妖视频| 色噜噜狠狠色综合日日| 97久久精品国产一区二区三区| 日本中文字幕亚洲乱码| 国产色A∨在线看精品| 真人做爰视频成人观看| 国产精品欧美一区二区三区喷水| 精品久久久久久久久久久久包黑料| 中国少妇无码专区| 又欲又肉又黄高h1v1| 午夜视频一区二区三区| 97久久超碰精品视觉盛宴| 日韩精品人妻系列无码专区| 日本乱人伦aⅴ精品潮喷| 风流少妇野外精品视频| 热久久国产欧美一区二区精品| 波多野结衣一区二区三区av高清| 国产精自产拍久久久久久蜜| 久久久青青草亚洲成人av| 国产又黄又爽又猛视频在线观看| 国产免费午夜福利757| 在线看片人成视频免费无遮挡| 国产成人精品精品日本亚洲| 国产精品线在线精品| 欧美日韩一区二区三区aa| 日韩欧美中文字幕在线视频| 2020亚洲欧美国产日韩| 成人污污污www网站免费| 韩国一级精品毛片| xxx+成人精品+视频在线| 国产三级免费观看| v8888AV偷拍夫妻| 男女啪啪激情视频免费观看国产| 国产91精品久久久久91黄色| 亚洲欧洲美色一区二区三区| 国产精品美女久久久久av爽李琼| 亚洲精品欧美精品在线观看视频| 猫咪免费人成网站在线观看| 久久青青草原精品国产app| 亚洲中文字幕人成乱在线| 日本三级欧美三级人妇视频黑白配| 日本欧美亚洲中文在线观看| 国产成人av亚洲一区二区| 亚洲国产中文字幕无线乱码 | 八十路で初撮り老熟妇中国| 久久久久国产精品免费免费搜索| 狠狠综合久久久久尤物| 欧美成人精品一区二区三区在线看| 白嫩无码人妻丰满熟妇啪啪区百度 | 亚洲精品国产中文字幕在线| 国产剧情中文字幕一区二区| 偷柏自拍亚洲综合在线| 中文天堂最新版资源www| 国产乱码人妻一区二区三区四区 | 你懂的国产高清在线播放视频| 18+韩国美女主播| 日韩欧美国产一区二区三区久久| 亚洲美女高清无水av| 国产亚洲精品影视在线| 无码人妻丰满熟妇区网站| 久久综合亚洲色1080p| 国产精品久久久久久久密月| 亚洲AV人无码激艳猛片| 午夜福利人妻专区一区二区| 狠狠色丁香婷婷久久综合蜜芽 | 久久久噜噜噜久久熟女aa片| 国产又色又爽又刺激在线观看| 欧美又大又粗又湿a片| 99国内精品久久久久久久| 国产精品一区二区三久久不卡 | 天天天天做夜夜夜做| 久久ee热这里只有精品| 日韩国产亚洲一区二区三区 | 最新国产激情视频在线观看 | 91久久国产婷婷一区二区| 怡红院怡春院视频免费看| 香蕉97超级碰碰碰免费| 欧美综合在线视频| 啪啪视频最新地址发布页 | 岛国+激情+无码| 国产无套精品一区二区三区| av一区二区在线观看| 麻豆亚洲AV无码精品色尤物| 乱公伦媳..~啊~视频| 亚洲制服丝袜一区二区三区| 欧洲日韩亚洲无线在码| 18+国产+成人| 国产一区二区三区四区精华| 亚婷婷洲av久久蜜臀小说| 亚洲av成人国产精品动漫 | 久久久久久久久人妻福利免费看| 欧美精品黄片一区二区三区| 日本+欧美+国产| 久久精品国产亚洲av水密被窝| 综合色区无码一区| bt天堂在线bt网| 国产成人午夜片在线观看高清观看| 老子影院在线观看理论片| 国产在线观看免费观看99| 神马久久久久久久久| 日本真人做爰a片| 深夜福利小视频在线观看| 日韩人妻无码免费视频一区二区三区 | 天堂8中文在线最新版在线| 白浆+高潮+免费| 欧美黄色激情视频| 色色色色色五月丁香婷婷| 山东乱子伦视频国产| 欧美视频在线观看免费www| 奇米第四声中文字幕| 无套内内射视频网站| 无码区日韩特区永久免费系列| 刘玥亚洲一区二区三区91久久| 国产午夜福利100集发布| 国产精品4huwww| 吸舌添泬的A片视频| 人人爽久久涩噜噜噜av| 网友自拍+偷窥+国产| 大地资源二中文在线观看下载 | 久久久橹橹橹久久久久手机版 | 久久久精品成人免费影院| 亚洲国产99精品国自产拍| 五月天丁香婷婷亚洲综合一区 | 国产午夜福利在线观看红一片 | 亚洲精品成人无码中文毛片不卡 | 制服丝袜第一页在线| 麻豆专媒体一区二区| brazzers精品成人一区| 精品国产亚洲av制服丝袜高跟| 成人做爰A片免费看黄冈宾馆| 交专区videossex| 欧美一区二区视频国产精品| 久久精品www人人做人人爽| 色婷婷综合缴情综在线播放| 鸭子tv国产在线永久播放| 日韩欧美AⅤ综合网站发布 | 日逼视频国产精品免费看| 搡老熟女老女人一区二区| 国产亚洲精品久久久久久老妇| 欧美成人精品三级网站视频| 亚洲va久久久噜噜噜熟女软件| 制服丝袜手机在线| 国产精品免费看久久久久久| 国产曰又深又爽免费视频| 青草久久久国产线免观| 亚洲国产精品s8在线观看| 好爽好湿好硬好大免费视频| 成人a免费视频中文字幕| 午夜精品乱人伦小说区| 久久久91精品国产一区二区三区| 全国最大的成人网| 国产精品久久久久AV福利动漫| 探花视频免费观看高清视频| 国内精品麻豆美女在线播放视频 | 日韩一级黄色录像| 玖玖精品在线视频| 和闺蜜野外交换做爰的注意事项| 亚洲一区二区三区黄色| 国产一区二区欧美在线观看| 少女国产免费观看高清电视剧大全 | 少妇毛片一区二区三区| 天天综合天天做天天综合| 欧美精品黄片一区二区三区| 亚洲中文无码av永久| 国产av亚洲aⅴ一区二区| 美女国产毛片a区内射| 国产亚洲AV片在线观看18女人| 最近高清日本免费| 日韩精品亚洲aⅴ在线影院| 无码人妻少妇久久中文字幕| 中文字幕亚洲乱码1区2区| 国产精品三级av及在线观看| 色综合伊人丁香五月桃花婷婷| 91亚洲欧美日韩国产综合| 久久婷婷综合99啪69影院| 精品噜噜噜噜久久久久久久久| 国产视频一区二区在线免费观看 | 精品少妇一区二区30p| 亚洲精品国产乱码不卡在线观看| 川上优av一区二区线观看| 国产麻豆亚洲欧美高清一区二区 | 在线观看jizz| 在线看人妻视频中文字幕| 又粗又黄国产视频.com| 视频毛片下载蜜桃视频1| 粉嫩一区二区三区四区公司1 | 欧美成人精品三级网站视频| 午夜乱码爽中文一区二区| 国产+午夜福利+久久精品| 国产午夜夜伦鲁鲁片| 熟女俱乐部五十路二区av| 久久99热这里只有精品国产| 日本乱人伦aⅴ精品潮喷| 国产美女免费无遮挡网站| 亚洲日韩精品成人无码专区AV| www.香蕉.com| 一级午夜黄色视频| 国产午夜福利片在线观看| 一夲到东京熬加勒比| 亚洲五月丁香综合视频| sm+另类+在线视频| 久久精品嫩草影院| 免费+国产+在线观看| 国产精品黄日韩成人黄亚洲| 免费+国产+ktv| 91国偷自产中文字幕久久| 黄色成人av网站| 国产精品精品视频一区二区三区| 一本加勒比hezyo爆乳| 美女搡BBB又爽又猛又黄www| 久久精品99久久香蕉国产色戒 | 日韩中文在线字幕| 久久99精品国产免费观观| 麻豆ā片免费观看在线看| 久久综合九色综合欧美狠狠| 欧美日韩亚洲一区二区蜜桃臀| 69国产精品久久久久久人妻| 97国产欧美人人爽人人做| 日韩精品免费一区二区夜夜 | 在线日本国产成人免费不卡| 国产精品毛片在线完整版| 亚洲妇熟xx妇色黄蜜桃| 免费a级毛片18以上观看精品| 国产亚洲五月天综合91| 欧美午夜福利理论片久久| 久久成人在线视频| 男人激烈吮乳吃奶视频免费| 国产精品欧美三区四区五区| 亚洲av成人一区国产精品一| 欧美婷婷六月丁香综合区| a亚洲va欧美va国产综合| 国产黑丝在线视频| 国产福利一区二区三区在线视频| 偷青青国产精品青青在线观看 | 波多野结衣肉翻猛高潮| 中文资源在线一区二区三区av| 色噜噜狠狠色综合日日| 亚洲免费网站观看视频| 欧美一区二区三在线观看| 日韩国产亚洲一区二区三区| 四虎精品美女国产在线观看| 2021最新国产精品网站| 亚洲国产精品久久久久久久 | 欧美日本三级少妇三级久久| 欧美成人免费在线观看| 日本一区二区三区专线| 粉嫩av一区二区三区四区免费| 日本道免费精品一区二区| 国产高清视频在线| 国产精品一区波多野结衣| 国产精品一区二区三久久不卡| y111111111免费观看电视| 武则天被狂躁C到高潮| 小夫妻高潮偷拍合集| 777久久久风间由美中出| 午夜精品久久久久久久99热额| 久久精品国产99精品国产2021| 80s+毛片+免费观看| 天堂一区二区在线免费观看| 国产99久久精品免费看| 《美丽的小蜜桃2》女主是谁| 国产+刺激+高潮| www成人在线观看| 国产+日产+视频| 99久久极品少妇深夜福利| 波多野结衣一区二区三区av高清| 精品国无人区一品二品三品的特点| 永久免费不卡在线观看黄网站| 一本色道久久HEZYO无码| 日韩精品免费一区二区夜夜| 韩国三级l中文字幕无码| 尹人香蕉久久99天天拍久女久| 护士被黑人狂躁A片| 欧美亚洲国产片在线播放| 黄色网页在线播放| 青草影院内射中出高潮| 久久综合亚洲色1080p| 中文字幕一区二区在线看www| 少妇一级淫免费放| 亚洲乱码在线卡一卡二卡新区豆瓣| 久久精品国产精品| 亚洲+日韩+专区| 国产成本人视频在线观看| 国产欧洲色婷婷久久99精品91| 美女+国产+免费| 中文字幕一区二区在线免费观看| 国产女生高潮视频免费网站| 亚洲欧美日韩国产综合在线播放| 亚洲精品a片99久久久久| 五月天激情久久久| 男人午夜免费视频观看在线| 熟女人妻av五十路六十路| 在线观看日韩中文字幕| 久久久国产精品免费| 国产二级一片内射视频插放| 亚洲人成77777在线播放网站不卡 神马影院手机在线观看 | 日本欧美在线视频免费一区二区| 一本到12不卡视频在线dvd| 亚洲熟妇AV一区二区三区| 中文字幕乱码视频32| 欧美在线99香蕉在线视频| 亚洲精品偷拍无码不卡av| 精品久久久久久777米琪桃花| 亚洲大尺度无码无码专区| 国产美女视频精品黄频免费观看| 亚洲风情亚aⅴ在线发布| 国产成人精品自产拍在线观看| 成人黄色免费观看| 色婷婷国产精品高潮呻吟av| 欧美视频精品免费覌看| 亚洲中文字幕一区二区麻豆| 亚洲成av人片在线观看天堂无| 人妻在厨房被色诱| 淫色一非一区二区朝鲜| 亚洲欧美另类自拍小说网| 午夜亚洲国产理论片二级港台二级| 女女女女女裸体处开bbb| 日韩精品+一区二区+在线观看| 国产精品久久久久久久福利| 久久国产免费福利永久| 亚洲精品图片区小说区| 国产成人一区二区精品九色| 亚洲综合区图片小说区| 男女乱淫免费视频一区二区三区| 国产在线精品一区二区在线看| 81精品人妻一区二区三区蜜桃| 精品视频在线观看一区二区| 欧美乱码熟妇色精精品| 韩国主播av福利一区二区| 91啦丨露脸丨熟女| 亚洲天堂在线观看视频| 中文字幕永久免费| 重囗味sM群虐老女人| 国产又粗又猛又黄的免费视频| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 最新在线精品国自产拍福利| 高潮+国产+白浆| 亚洲精品入口一区二区乱麻豆精品 | 亚洲成人久久国产精品| 国产精品美女久久久久av丝袜| 国产女主播白浆在线观看| 在线观看+国产+免费| 巨茎与艳妇麻麻啪啪漫画| 青草青草久热国产精品| 一区二区三区成人免费频| 亚洲日韩色欲色欲com| 久久人妻无码一区二区三区av | 少妇高潮喷水视频| 69视频免费观看| 琪琪国产一区在线观看视频 | 国产精品国精产品一二三区| 亚洲人交乣女bbw| 一区二区三区不卡在线观看| 91久久久精品国产一区二区蜜臀| 亚无码乱人伦一区二区| 国产精品一av一免费爽爽| 手机av在线不卡| 成人免费视频一区| 99国产精品久久久久老师| 精品久久久久久无码专区不卡| 国产成人精品一区二区在线观看| 国产成人精品无缓存在线播放 | √天堂8中文资源在线| 高清午色夜国产精品| 日韩a人毛片精品无人区乱码| 亚洲国产精品+嫩草影院+久久| а√中文在线资源库| 久久精品国产亚洲av桃花av| 国产69精品久久久久久久久久| 国产99精品最新在线播放| 日韩特级无码av中文字幕| 真实国产乱子伦一区二区三区| 成人免费毛片AAAAAA片| 蜜臀av在线播放一区二区三区| 欧美日韩视频在线观看免费| 337p日本欧洲噜噜噜噜| 7878成人国产在线观看| 曰韩亚洲av人人夜夜澡人人爽 | 三级国产在线观看| 国产+高潮+精品| 国产微拍精品一区| 男人扒开女人双腿猛进免费视频| 一本色道av久久精品+网站| 尤物亚洲国产亚综合在线区| 国产乱人伦精品一区二区_国产91在线 | 亚洲乱码一区av黑人高潮| 欧美一级在线a级在线视频| 手机在线看片1024| 国产精品自在拍首页视频8| 日本乱妇乱子视频网站| 麻花免费观看nba高清在线| 琪琪777午夜理论片在线观看播放| 狠狠色狠狠色合久久伊人| 视频一区二区中文字幕在线| www.17c嫩嫩草色视频蜜桃| 国内精品视频一区二区三区| 一级成人欧美一区在线观看| 色播视频在线播放| 五月天婷亚洲天综合网手机| 久久久久久久国产视频| 天天狠天天插天天透| 日韩美女精品一区在线视频| 高清欧美精品xxxxx| 久久精品视频亚洲| 国产中年熟女高潮大集合| 亚洲欧美精品自拍视频视频| 国产一区二区三区导航| 成年女人免费视频| 日韩欧美在线第一页| 欧美人成在线视频| 69人妻精品丰满熟女区| 亚洲一区中文字幕| 五月婷婷在线视频观看| 99精品国产再热久久无毒不卡| 成人日韩欧美视频在线观看| 浪货趴ktv桌~H揉多p| 国产精品苏妲己野外勾搭| 亚洲国产精华液网站w| 免费一级欧美片在线观看欧美| 77久久人妻视频| 欧美一区二区在线播放| 鲁大师日韩MV在线观看| 狂躁少妇XXXX高潮无码| 91久久国产婷婷一区二区| 免费观看一区二区三区视频| 7799国产精品久久久久| 在线精品一区二区三区| 一本加勒比hezyo无码专区| 蜜桃av噜噜一区二区三区麻豆| 欧美日本国产韩国在线不卡 | 亚洲精品久久久久久蜜臀| 亚洲国产精品一区二区久久阿宾| 人成免费a级毛片| 四虎国产在线观看| 国产亚洲精品a第一页| 免费视频在线观看网站| 中文字幕亚洲综合久久综合| 国产精品r级最新在线观看| 国产又粗又长又硬又爽又黄视频| 足疗店熟女一88AV| 妙龄女被老汉压身小说作者其他小说 | 亚洲视频一区二区在线看| 天天爽夜夜爽视频精品| 国产一级淫片免费放大片| 夜鲁夜鲁狠鲁天天在线| 成人无码一区二区三区网站| 国产精品欧美一区二区三区不卡 | 日韩精品无码免费专区午夜不卡 | 色偷偷人人澡人人爽人人模| 国内揄拍高清国内精品对白| 乌克兰女人大白屁股ass| 爆乳熟妇一区二区三区霸乳| 97视频在线播放| 中文字幕+乱码+无忧| 亚洲成人在线播放视频| 国产网红美女自拍小视频网址| 欧美国产日韩在线观看视频一区| 国产偷人妻精品一区二区在线| 国产高潮又爽又刺激的视频免费| 国产精品成人亚洲777| 五十路豊満の交尾在线| 国产精品无码v在线观看| 饥渴难耐的人妻一区二区三区| 亚洲天堂2014| 亚洲精品久久久久久蜜桃| 国产精品99久久久久久董美香| 日本黄色视频在线观看一区| www.四虎色情.com| 成人精品视频中文字幕版| 国产精品成人一区二区三区吃奶| 欧美日韩国产高清一区二区三| 国产精品一区二区三区精品视频| 国产999视频在线观看| 大地资源中文一二三页的特点 | 在线视频国产网址你懂的| 亚洲一区二区经典在线播放| 国产成人精品男人的天堂网站 | 国产精品视频一区二区三区不看| 伊人久久精品无码麻豆一区| 久久免费黄色网址| 国产伦理五月av一区二区| 国产+免费+裸体| 中文字幕久热精品视频在线| 男女污在线亚洲午夜视频| 亚洲l码和欧洲m码的区别| 东北少妇BBBB搡BBB搡| 奶头好大狂揉60分钟视频| 在线免费看av网站| 太骚了全程对白Spa69| 1024手机在线看片| 欧美大片18禁aaa片免费| 午夜国产精品入口| 成在人线Aⅴ无码免费高潮水| 换人妻做爰XXⅩXXA片| 成在人线av无码免费看网站| 国产精品视频在线观看| 精品乱码一区二区三区四区| 国产在线观看www污污污| 国产精品99久久久久久人红楼| 福利视频中文字幕一区二区| 国产黄色片在线播放| 亚洲+欧美+综合| 中文字幕乱偷无码av先锋蜜桃| www日本com| 懂色av蜜臀av粉嫩av分享吧最新章节 | 国产+在线+观看| 熟妇精品一区二区三区四区| 三个熟睡少妇的按摩中文字幕| 黄色免费网站视频| 无码人妻一区二区三区筱田优| 欧美区亚洲区国产区一区二区| 韩国精品久久久久久无码| 久久久精品国产免费观看一区二区| 《与上司疯狂做爰》| 国产午夜福利100集在线观看| 一区二区不卡av免费观看| 国产在线精品一区二区在线看 | 国产精品美女www爽爽爽软件| 2014av天堂无码一区| 久久久久久久99| 高清国产亚洲精品自在久久| 国产女人18毛片水真多成人如厕| 18+深夜福利+日韩毛片| 先锋影音av最新资源| 四虎视频在线精品免费网址| 全网最新最全热门短剧在线观看 | 亚洲天堂av在线免费观看| 西西4444WWW无码精品| 亚洲成人日韩高清在线观看| 麻豆天天躁天天揉揉av| 色阁精品香蕉一区二区| 亚洲精品午夜国产va久久成人| 九色视频在线免费观看| 中文字幕日韩精品有码视频| 亚洲美女视频一区二区三区| 国产乱人伦偷精品视频免下载 | 欧美精品中文字幕在线视| 日本道精品一区二区三区| 国产精品美女久久久久久av爽| 亚洲第一综合网站| sao货妓女的yin荡生活| 亚洲精品综合在线| 免费中文字幕在线观看| 乖灬舒服灬别拔出来灬男男| 欧美巨大xxxx做受中文字幕| 精品久久香蕉国产线看观看亚洲| 亚洲色成人网站www永久四虎| 国产成人JVID在线播放| 成a人影片免费观看日本| 91麻豆精产国品一二三产品测评| 中文字幕av一区二区三区ay| 精品国产乱码久久久久久口爆网站| 中文字幕精品av一区二区五区| 色哟哟丨小泬丨国产专区| 欧美国产日韩亚洲中文| 欧美三级欧美成人高清www| 在线观看国产免费高清不卡| 99久久综合伊人东京热| 中文字幕+乱码+高清| 老色鬼久久亚洲av综合1| 女女女女女裸体开bbb| 国产中文在线三级不卡| 亚洲va欧美va国产综合久久| 国产69久久久欧美一级| 中国极品少妇XXXXX1314| 国产精品久久久久久超碰 | 日本精品视频一区| 国产一级久久久久av片| 日韩欧美国产一区二区| 色88欧美日韩国产无线码| 国产精品一区二区免费| 亚洲+群p+在线| 免费全部高h视频无码软件| 可以在线观看免费av的网站| 高清国产一区二区| 97国产人妻人人爽人人澡| 丰满岳乱妇三级高清| 最近更新中文字幕2019视频| 国产精品人人爽人人做av片| 影音先锋+剧情+女仆| 国产69精品久久久久男男系列| 婷婷在线精品视频免费观看| 久久久久波多野结衣高潮 | 99视频+国产日韩欧美| 爽爽爽爽成年网站在线观看| 久久99国产综合精品免费99| 无码人妻一区二区三区免费视频| 国产中文字幕在线观看| 日韩一区二区三区视频| 久久精品国产99久久久| 亚洲Aⅴ成人精品一区二区三区| 国产欧美日韩视频一区二区三区| av片在線觀看永久免費| 色综合久久无码中文字幕| 精品国产国语对白av优播av| 粗大的内捧猛烈进出视频| 欧美+视频+中文字幕| 亚洲国产三级在线观看| 国产一区二区蜜臀av在线| 午夜影视在线观看免费| 无遮挡啪啪摇乳动态图| 亚洲AⅤ无码国精品中文字慕| 国语少妇私密推油S卩A视频在线| 日韩好片一区二区在线看| 亚洲人成网站18禁止中文字幕| 91精品国产综合久久精品图片| 欧美变态另类刺激| 国产成人久久av免费高清密臂| 国产亚洲精品久久久999| 国产欧美成aⅴ人高清| 中文字幕无码一区二区免费| 99久久久久国产精品免费| 曰韩a∨无码一区二区三区| 正在播放懂色av| 99久久婷婷国产综合精品| 亚洲欧美日韩国产一区二区在线| 成人免费一区二区三区视频软件| 国产激情视频免费在线观看| 国产菊眼屁股交3| 97色伦综合在线欧美视频| 91久久精品日日躁夜夜欧美| 影视av久久久噜噜噜噜噜三级| 高清国产下药迷倒白嫩| 亚洲精品无码播放| 亚洲旡码欧美大片| 女同久久国产精品99国产精品| 亚洲午夜一区二区久久久久 | 女同av女同一区二区三区| 欧美成人在线免费观看| 无码综合天天久久综合网| 日本一卡二卡不卡视频查询| 国产免费午夜福利不卡片在线| 欧美日本国产韩国在线不卡| 美女+福利+中文字幕| 国产色综合天天综合网| 一级黄色免费大片| 日韩一区欧美激情校园春色| .17c嫩嫩草色视频| 夜噜噜久久国产欧美日韩精品| 少妇下面好紧好多水播放| 中文字幕av九五月天| 国产精成人品日日拍夜夜| 亚洲日本乱码一区二区产线一∨| 又粗又黄又爽视频免费看| 高潮+喷水+白浆| 国内精品国产三级国产a久久| 日韩激情在线观看| 美女+高潮+国产| 中文字幕aⅴ在线视频| 亚洲成a∨人片在线观看不卡| 国产日本欧美一区二区在线观看| 一本加勒比hezyo爆乳| 久久aⅴ人妻少妇嫩草影院| 窝窝影院在线播放免费观看电视剧 | 歪歪爽蜜臀av久久精品人人| 亚洲一区二区三区乱码av麻逗| 北条麻妃大战黑人无码| 欧美日韩一区在线播放| 国产亚洲欧美精品一区| 久久天天躁狠狠躁夜夜躁综合| 大桥未久+脚+磁力链接| 国产精品成人免费视频一区二区| 久久久久久久99| 亚洲依依成人精品| 精品无码成人久久久久久| 久久精品亚洲成在人线av麻豆| 天堂一区二区mv在线观看| 国产精品苏妲己野外勾搭| 黄色网页在线观看| 亚洲精品一区二区三区中文字幕| 亚洲免费视频网站| 国产黄在线观看免费观看不卡| 少妇爆乳无码专区网站| 免费日韩av在线| 日韩一级二级视频| 日本三级欧美三级人妇视频黑白配| 中文天堂最新版资源www| 国产精品久久久久久久av福利| 国产在线观看免费人成视频| 日韩美女免费毛片一区二区| 亚洲AV日韩AV无码黑人| 91精品国产免费久久久久久| 国产精品zjzjzj在线观看| 人+国产片+综合| 九九久久99综合一区二区| 国产伦子伦一级A片免费看刘亦菲| 精品久久久久久中文字| 少妇做爰全过内谢| 欧美三级少妇高潮| 99久久免费精品国产72精品九九| 丰满人妻做爰2理伦片免费看| 一本色道久久HEZYO无码| 5g影视+国产+日韩| 国产精品偷伦视频免费手机播放 | 亚洲日本中文字幕在线四区| 国产av大陆精品一区二区三区| 亚洲成人久久国产精品| 一区二区三区四区在线播放| 欧美人与动物胶配方有几种| 漫蛙漫画(网页入口)| 国产+亚洲+制服| 欧美国产中文字幕在线视频| 精品欧美一区二区三区久久久| 国产高清在线a免费视频观看| 国语精品深夜亚洲妇久久资源| 亚洲成综合人影院在院播放| 中文字幕人妻色偷偷久久| 国产精品青草久久久久婷婷| 国产女子爆操高潮免费视频| 欧美美女免费国产一区二区 | 制服肉丝袜亚洲中文字幕| 多乙亚洲国产中文综合| 中文字幕+欧美精品+制服丝袜 | 亚洲最大av无码网站最新| 柳州莫菁菁av一区| 国产高清午夜人成在线观看| 少妇精品综合无码| 亚洲熟妇AV乱码在线观看 | 精品美女免费视频wwxx| 亚洲精品中文字幕国产精品 | 97人妻系列高清一区二区| 国产99视频精品免视看芒果| 99在线视频一区二区三区| 中文字幕欧美高清在线观看| 亚洲精品午夜视频| 亚洲国产中文字幕全部视频列表 | 美女黄网站色视频免费观看| 精品亚洲成a人片在线观看少妇| 欧美成人看片一区二三区图文| 波多野结衣无码一区二区| 粉嫩小泬18XXXⅩ高潮| 久久99久久99精品免视看| 久久视频这里有久久精品视频11| 日韩欧美国产aⅴ另类| 18+漫画美女+日韩毛片| 麻豆果冻传媒精品+视频| 国产亚洲999精品aa片在线爽| 婷婷五月开心亚洲中文字幕| 亚洲精品国产主播在线三区| 亚洲天堂制服丝袜在线观看| 1024国产视频| 久久国产午夜精品理论片| 成人看黄色s一级大片| 亚洲少妇无码综合| 免费毛片全部不收费app下载 | 高清一区二区三区日本久| 亚洲中文字幕av一区二区三区| 国产精品人人妻人人爽人人牛| 欧美久久国产精品| 91久久精一区二区三区大全| 天堂中文在线免费观看视频| 中文字幕欧美日韩va免费视频| 免费网站在线观看人数在哪里直播| 朝鲜女人大白屁股ass| 欧美a中文字幕在线播放| 欧美日韩免费不卡激情在线视频| 久久久精品国产免费观看一区二区| 成人18+免费观看视频| 亚洲欧美中视频国内自拍| 久久亚洲日韩看片无码| 国产日韩欧美亚洲综合v精品| 国产又粗又猛又爽又黄视频| 亚洲精品无码不卡久久久久| 九九影院在线观看电视剧| 国产乱人伦精品一区二区在线观看 | 国产在线精品一区二区在线看| 在线播放国产精品| 国产精品三级av及在线观看| 国产午夜精品高清在线观看| 中文字幕在线视频不卡| 尹人香蕉久久99天天拍久女久| 综合成人欧美网日韩青椒网| 少妇9999九九九九在线观看| 视频+成人+在线| 国产午夜av在线一区二区三区| 亚洲成l人在线观看线路| 久久天天躁夜夜躁狠狠85| 国内大量揄拍人妻精品视频| 精工厂777免费观看电视剧| 一区二区三区欧美在线观看| 磁力链接+日韩高清无码| 农村女人毛片精品久久久| 国产麻传媒精品国产av| 一本加勒比HEZYO无码| 国产精品人八做人人女人a级刘| 炕上肉交亲伦69XX| 丰满少妇内射一区| 太骚了全程对白Spa69| 国产精品不卡av在线播放| 精品一区二区三区影院在线午夜| 中文字幕日逼网站| 美女互摸视频一区二区三区| 精品人妻少妇一区二区三区不卡| 91精品视频在线看| 久久国国产免费999| 国产又粗又长又硬又爽又黄视频| 不卡视频一区二区三区| 亚洲午夜免费福利av| 亚洲综合另类小说色区一| 久久受www免费人成| 无码+磁力+日本| 亚洲va欧洲va国产va不卡| 亚洲+欧洲+国产中文字幕| 日韩黄色一级网站| 又粗又黄又爽视频免费看| 中文字幕一区二区三区国产| 东京热加勒比久久| 伊人精品久久久大香线蕉| 成人无码www免费视频嘿嘿软件| 国产在线高清理伦片a| 国产又粗又黄又硬又爽的毛片| 懂色av蜜臀av粉嫩av分享吧最新章节| 很色很爽很黄裸乳视频| 亚洲va久久久噜噜噜熟女软件| 已婚少妇露脸日出白浆| 午夜精品福利免费在线观看| va亚洲va天堂va视频在线| 偷柏自拍亚洲综合在线| 黑外教弄人妻波多野结衣| 久久人妻无码中文字幕第一 | 亚洲情a成黄在线观看动| 国产精品亚洲а∨天堂123 | 中文资源在线天堂库8| 色综合久久久天天综合网| 最近高清日本免费| 国产午夜福利片在线观看 | 少妇与黑人xoyyyyy视频| 又粗又硬又黄的国产视频| 国产福利资源在线| 日韩中文字幕在线观看| 色久综合网精品一区二区| 小s货又想挨c了叫大声点男男| 俺去俺来也www色官网cms| 国产精品成熟老妇女| www.欧美在线观看| 久久精品国产亚洲七七| 久久精品亚洲国产av麻豆| 久久国语精品三级亚洲一二| 美女视频一区二区三区| 一区二区三区+视频+在线| 国产精品美女久久久久久久久| 日本夜爽爽一区二区三区| 亚洲精品国产嫩草在线观看免费 | 日韩三级片在线播放| 人妻丰满熟妇av无码区App| 安徽妇搡BBB搡BBBB户外老太太| 精品国产自在精品国产浪潮| 在线亚洲精品国产二区图片欧美| 六十路の完熟豊満无码| 无码区日韩特区永久免费系列| 人妻中文字系列无码专区| 天堂在线免费观看视频www| 成年女人免费视频| 久久国产乱子伦精品免费午夜| 国产亚洲曝欧美精品手机在线| 无码+羽田桃子+番号| 国产亚洲成人av| 亚洲+日产+欧美| 狠狠色丁香婷婷亚洲综合| 又粗又硬又刺激欧美视频免费 | 亚洲va在线va天堂xx| 亚洲国产成人在线视频| 日本熟妇黑毛浓密白浆| 中文字幕一区二区在线免费观看| 精品国偷自产在线视频99| 少妇久久久久久被弄高潮| 乱色国内精品视频在线| 亚洲色图欧美视频另类视频| 免费看60分钟涩涩视频| 日韩女优一区二区三区在线播放| 免费成人进口网站| 91久久国产综合精品女同国语 | 婷婷色九月综合激情丁香| 国产成人精品一区二三区| 精品无码久久久久久久久久| 日本中文字幕一区二区高清在线| 欧美成人免费全部| 日韩黄色一级网站| 久久精品国产亚洲av麻豆尤物| 国产女生高潮视频免费网站| 色噜噜人妻丝袜av先锋影音先| 粉嫩小泬18XXXⅩ高潮| 欧美日韩无套内射另类| 小草社区视频在线观看| 日本无码人妻波多野结衣| 亚洲欧美精品一中文字幕| 精品福利一区二区| 亚洲午夜国产一区99re久久| 亚洲欧美激情另类图片小说| 熟女内射视频18| 亚洲+综合久久+成人av| 亚洲精品乱码久久久久久日本| 在线观看国产精品va| 亚洲乱码国产乱码精品精小说| 区二三区四区精华日产一线二线三| 色婷婷一区二区三区四区| 国产精品激情在线观看| 97在线观看永久免费视频| 八戒八戒在线www视频中文 | 先锋+视频+国产精品| 免费观看+影音先锋| 日本真人做爰a片| 四川少妇高潮无套毛片| 成年人免费视频在线| 青草久久人人97超碰| 亚洲第一毛片18我少妇| 亚洲国产精品热久久| 东京热一精品无码av| 91tv国产成人福利| 精品国产sm最大网站蜜芽| 精品国产三级大全在线观看| 久久国产免费直播| 87福利午夜福利视频少妇| 亚洲一区中文字幕| 狂躁欧美肥臀大BBBB| 偷窥+国产+综合| 西西444WWW无码视频男男| 国产一区二区三区精品综合 | 亚洲+少妇+专区| エッチなh0930熟女俱乐部| 一卡二卡亚洲视频在线观看| 亚洲又黑又粗又硬又爽视频| 亚洲熟妇AV一区二区三区| 久久www免费人成人片| 久久亚洲精品人成综合网| 国产精品久久久福利| 国产乱码久久久久久| 歪歪爽蜜臀av久久精品人人| 美女18禁一区二区三区视频| 少妇无码自慰毛片久久久久久| 午夜精品a片一区二区三区老狼 | 一本久久a久久精品综合夜| 2020久久香蕉国产线看观看| 精品久久国产字幕高潮| 国产黄色片在线播放| 欧美精品三级黄片| 精品亚洲国产成人av制服丝袜| 国产欧美成人精品www| 久久久久国产精品亚洲欧美| 久久久久久久国产精品免费| 日韩区一区二区三区视频| 韩日在线视频观看| 成人免费淫片aa视频免费| 国产乱人伦偷精品视频不卡| 美日韩丰满少妇在线观看| 成年网站在线在免费线播放欧美| 天堂在线天堂新版www| 第一页中文字幕在线观看| 羞羞影院午夜男女爽爽在线观看| 色哟哟免费视频播放网站| 国产精品视频一区二区在线观看| 日韩精品一区二区色偷拍| x88AV~熟女人妻| 成人午夜精品一区二区张津瑜| 亚洲18在线看污www麻豆| jizz国产免费| 日韩三级国产三级| 黑人搡BBBBB搡BBBBB| 国产后入激情视频在线观看| 久久中文字幕乱码久久午夜| 日日噜噜夜夜狠狠久久丁香五月| 天海翼torrent+下载| 成人免费区一区二区三区| 免费在线观看一区| 男女做爽爽爽网站| 泽井芽衣+磁力链接+mp4| 国产乱国产乱老熟| 亚洲精品成人片在线观看精品字幕 | 成人欧美一区二区三区在线| 18+av在线免费| 妺妺窝人体色777777粗玫瑰园| 精品欧美在线观看视频二区| 国产99对白在线播放| 欧美日韩在线视频播放| 9·1免费观看完整版高清下载| 国内自拍一二三四2021| 成人午夜免费网站| 91麻豆精选国产自产免费观看| 国产精品国产av国产三级| 欧美激情国产一区二区13| 国产成人在线视频资源站| 国产永久免费高清在线| 强开小嫩苞一区二区三区网站| 草莓污视频+导航+网站你懂的| 成年偏黄全免费网站| 国产日韩欧美综合精品一区二区| 久久精品99精品国高潮| 亚洲综合另类小说色区一| 【精品国产】乱子伦海角论坛| 欧美成人一区二区三区蜜臀| 精品久久久久久久久久久久包黑料| 精品国产综合区久久久久久小说 | 丝袜无码一区二区三区| 内射白浆一区二区在线观看| 无码专区视频精品老司机| 人妻美妇av一区二区精品| 少妇大胆瓣开下部自慰| 自拍偷亚洲产在线观看| 久久人人爽亚洲精品天堂| 久久久久高潮毛片免费全部播放| 法国色情巜卧室肉欲| 91精品国产综合久久福利软件| 懂色av蜜臀av粉嫩av分享吧| 巨茎人妖videos另类| 姝姝窝人体www聚色窝| 办公室制服丝祙在线播放 | 偷窥+国产+综合| 狠狠噜天天噜日日噜色综合| 怡红院亚洲综合欧美久久久| 欧美韩国一区二区| 亚洲免费网站观看视频| 亚洲美女黄色一级啪啪视频| 国产+免费+综合| 国产又黄又爽又色视频免视频| 一二三四日本中文在线| 国产成人精品AV| 一区二区不卡av免费观看| 精品蜜臀av在线天堂| 国产精品视频六区| 在线观看国产免费的电视剧| 91亚洲乱码卡一卡二卡新区豆| 狠狠色狠狠人格综合| 白浆+高潮+喷水| 国产乱码一区二区三视频| 国产精品青草久久久久婷婷| 中文人妻无码一区二区三区信息| 色丁狠狠桃花久久综合网| 精品国产综合区久久久久久小说 | 噜噜噜亚洲精品在线观看| 日本入室强伦轩人妻HD| 一本到综在合线伊人| 岛国+激情+无码| 成人做爰视频www| 亚洲av色香蕉一区二区| 最新国产成人av网站 | 99久久精品国产综合一区| 美日韩熟女与少妇精品激情| 夜夜嗨av一区二区三区| 日本最新免费二区| 99re在线观看视频在线观| 日韩精品一区二区三区+在线观看| 欧美一级一区二区三区| 精品+国产+白浆| 精品人妻少妇一区二区三区不卡| 亚洲欧美动漫卡通另类bt| 99久久精品免費看國產| 亚洲成a人片在线播放| 久久国内精品自在自线图片| 久久夜色精品国产噜噜亚洲SV| 青草视频在线观看视频| www.日韩精品在线观看| 日韩在线视频+在线播放| 国产三级精品三级在线| 中文字幕有码免费在线观看| 91久久香蕉国产日韩欧美9色| 手机av中文字幕| 91狠狠色丁香婷婷综合久久| 国产精品毛片在线完整版SAB| 中文字幕日韩三级| 国产高清精品一区二区三区| 777777国产7777777| 好吊妞国产欧美日韩免费观看| 六夫共妻高H喷汁呻吟NP| YY4480青苹果乐园免费播放电视剧| 合不拢腿(双)by粗眉毛免费朗读| 少妇久久久久久久| 国产欧美成人xxx视频| jav+中文字幕| 国产免费人成视频在线观看| 97在线播放免费观看全集电视剧| 影音先锋+剧情+女仆| 国产+日韩+欧美成人| 成人黄色手机在线| 美女18禁永久免费观看网站| 久久97精品久久久久久久不卡| 亚洲欧美日韩国产91在线| 日韩精品专区av无码| 精品国产乱码久久久久久乱码 | 粉嫩小泬无遮挡BBBBB图片| 级r片内射在线视频播放| 国产免费又爽又色又粗视频| 日韩精品国产一区在线久草| 日本少妇又色又爽又高潮看你| 苍井空亚洲精品AA片在线播放 | 亚洲自偷自拍另类12p| 亚洲国产精品一区二区美利坚| 亚洲AV色欲色欲WWW| 伦利理午夜理论片| 亚洲综合欧美精品一区二区| 东北粗壮熟女丰满高潮| 四虎影视在线观看国产精品| 女人高潮奶头翘起来了| 99久久婷婷国产综合精品| 亚洲精品一区二区三区四区乱码| 中文字幕亚洲欧美中文字幕| 最近最好看的2018中文字幕| 少妇荡乳情欲办公室毛片一区二区| 免费人成再在线观看视频| 国产精品久久久久久三级| 久久亚洲精品小早川怜子| 日韩+国产+欧美| 国产精品码在线观看0000| 麻豆精品一区综合av在线| 午夜欧美福利视频一区二区| 国产又粗又长又硬又黄视频 | 日韩精品视频在线视频播放 | 91精品众筹嫩模在线私拍| 欧美成a人片在线观看久| 午夜福利精品kkk在线| 国产成人三级在线观看| 国产亚洲欧美专区精品| 13一16女处被毛片视频| 国产精品人在线观看| 久久久久久亚洲精品a片成人| 2022亚洲无砖无线码| 国产精品丝袜www爽爽爽| 78成人天堂久久成人| 日韩精品在线第一页| 国产乱xxxxx978国语对白| 少妇太爽了在线观看视频| 免费人成视频网站在线下载| 中文字幕丰满孑伦无码专区| 一区二区精品视频大全在线播放| 乱码一卡二卡新区永久入口| 2019年国产精品看视频| 九九热线视频精品99| 色播视频在线播放| 黑人精品一区二区| 亚洲国产成人精品女人久久久逼| 亚洲国产高清aⅴ视频| 欧美在线观看免费播放视频| 一区二区三区四区欧美极品| 国产精品99久久最新视频| 日本欧美一区二区三区乱码| 妺妺窝人体色88888美女吗| 色视频高清精品一区二区| 国产精品中文字幕日韩精品| 最近2018中文字幕在线视频| 五月婷婷丁香久久| 国产精品污污网站在线观看| yy4480青苹果乐园免费播放电视剧| 国产99久久精品免费看| 黄色av一区二区三区四区| 桃色视频高清亚洲一区二区在线 | 在线亚洲国产鲁一鲁网| 亚洲欧洲免费黄色视频| 中国少妇大战黑人白浆| 又粗又猛又黄又爽视频| 日韩欧美精品人妻二区少妇| 3p人妻少妇对白精彩视频| 日韩欧美中文字幕一区二区| 久久91精品国产91久久小草| 成视频年人黄网站视频福利| 久久久青草婷婷精品综合日韩| 亚洲不乱码卡一卡二卡4卡5| 午夜免费福利视频| 无码专区—va亚洲v专区vr| 成人黄色免费观看| 亚洲黄色中文字幕免费在线观看| 亚洲欧洲免费黄色视频| 天美MV星空大象MV免费观看| 免费+国产+日本| 成人福利综合视频免费视频| 无码人妻精品一区二区三| 97人妻系列高清一区二区| 高清国产午夜精品久久久久久 | 亚洲精品无码不卡| 久久99这里只有精品| 超碰中文字幕在线| 99精品视频一区在线观看| 国产+免费+高清| 中文字幕+17c| 欧美又粗又长又色又猛视频| 久久久久波多野结衣高潮| 亚洲国产精品一区二区美利坚| 国产高潮又爽又刺激的视频免费| 日韩av爽爽爽久久久久久| 合不拢腿(双)by粗眉毛免费朗读| wWWW特级西西大胆女人的艺术| 又黄又粗又爽的免费视频| 欧美亚洲国产片在线播放| 国产一区二区三区在线乱码| 免费在线观看av网站| 国模大胆一区二区三区 | 狠狠色狠狠人格综合| 亚洲无线观看国产精品| 亚洲精品一区二区三区香蕉| 奇米影视亚洲春色| 最近中文字幕免费观看视频 | 最近中文字幕在线视频8| 欧美成人一区二免费视频小说| 中文字幕亚洲第14| 中文在线字幕免费观看电视剧大全| 男女啪啪激情视频免费观看国产 | 日韩中文字幕av在线| 国产+欧美+日本| 先锋+视频+国产| 久久精品久久精品亚洲人| 成人精品一区二区三区中文字幕| 欧洲精品欧美精品| 免费+国产+麻豆| 亚洲欧美另类麻豆综合网| 99久久一区二区| 天天躁日日躁狠狠躁av中文| 新无码毛片一区二区有码| 美女互摸视频一区二区三区 | 欧美热在线视频精品999| 日本在线观看一区| 欧美+国产+韩国| 一区二区三区成人免费频| 亚洲婷婷综合久久一本伊一区| 三年成都中文在线观看免费版| 国产亚洲精品午夜理论片| 国产午夜福利久久精品| 97在线播放免费观看全集电视剧 | 床震高潮在线观看无遮挡| 亚洲欧美国产综被窝蜜臀| 国产人妻精品久久久久野外| 国产精品+丝袜+制服| 久久亚洲精品无码观看网站| 国产又粗又猛又爽的视频a片| 亚洲Av乱熟妇A片大全| 日韩在线一区视频| 再深点灬舒服灬太大了快点91| 国产+日韩+欧美精品| 丰满无码人妻热妇无码区| 六月丁香婷婷综合| 哈尔滨熟女白浆91九色| 亚洲免费观看在线美女视频| 亚洲va国产va天堂va无视| 中文字幕亚洲无线码在线一区| 午夜成人片在线观看免费播放| 日韩三级伦理片色呦呦中文字幕| 国产寡妇精品久久久久久| 中文字幕+日韩+高清| 秋霞无码久久一区二区| 中文字幕日逼网站| 国产又猛又粗又爽又黄91| 无码人妻精品中文字幕不卡| 国语干离异富婆的骚B| 国产亚洲网曝欧美台湾丝袜| 虫虫漫画免费漫画弹窗入口| 亚洲色成人网站www永久尤物| 人妻丰满熟av无码区HD| 国产精品porn| 欧美+国产+动漫卡通| 337p日本欧洲亚洲大胆| 美女黄页网站国产在线观看| 粉嫩一区二区三区四区公司1| 久久久久久久久久久久中文字幕 | 小泽玛利亚AⅤ成人片| 国产盼盼私拍福利视频99| 丰满美女一级视频一区二区三区| 天天躁日日躁狠狠躁伊人| 国产美女久久久免费牲交| 久久精品国产免费看久久精品| 无码+调教+西瓜影音| 少妇熟女久久综合网色欲| 国产日韩在线欧美一区二区 | 国产精品免费视频观看| 日韩一区二区视频| 91精品视频在线看| 伊人久久精品无码麻豆一区| 超高清欧美videossexopor| 国产精品久久久久久影院| 夜夜躁狠狠躁2021| 国产女主播尤物视频在线观看 | 亚洲综合国产精品第一页| 丰满+迅雷+中文字幕| 无码人妻少妇精品无码专区漫画| 夫妻高潮淫语对白视频| 中文字幕高清在线| …伊人久久婷婷国产综合| 一本到12不卡视频在线dvd| 亚洲黄色免费观看| 精品国产亚洲av色噜噜| 亚洲精品久久久av无码专区| 91久久精品国产| 一区二区三区四区在线播放| 国产sm鞭打调教女m视频| 18+免费+日韩毛片| 在线人视频观看免费| 丰满美女一级视频一区二区三区| 又粗又紧又湿又爽的视频| 男人和女人在床的app| 成人做爰A片免费看黄冈宾馆 | 国精品午夜福利视频不卡| japanese色国产在线看免费| 亚洲欧美日韩人成在线播放| 亚洲一区二区三区乱码av麻逗| 波多野结衣一区二区三区四区| 神马久久久久久久久| 无码人妻一区二区三区筱田优| 久久久综综合色一本伊人| 国产精品美女www爽爽爽爽| 成人做爰A片免费观看软件| 99久久免费视频在线观看| 人妻无码系列一区二区三区| 国产丝袜在线精品丝袜不卡| 农夫+导航+亚洲| 精品偷自拍另类在线观看| 99国产综合精品| B老骚B老熟B老太中国老骚B| 警花av一区二区三区| 亚洲制服国产丝袜综合四季av| 国产精品久久99精品毛片三a| 久久国产成人亚洲精品影院老金| 91久久久久久亚洲精品蜜桃 | 91久久精一区二区三区大全| 国产成人综合久久亚洲精品| 国产+高潮+白浆| 日韩欧美国产aⅴ另类| 亚洲精品视频一区二区| 欧美热久久这里只有精品| 欧美精品久久久久久久久久久 | 48手+真人+无码| 中文天堂最新版资源www| 久本草在线中文字幕亚洲欧美 | 成人啪啪色婷婷久| 一本到综在合线伊人| 国内精品伊人久久久久av一坑| 三级视频在线播放| 成人无码麻豆αV无码不卡| 国产三级精品在线| 人人澡人人爽夜欢视频| 无码人妻一区二区三区AV| a片+影音先锋资源网站| 欧美三级在线高清不卡| 国产成人免费?在线播放| 亚洲国产精品久久久久久久秋霞 | 亚洲精品成人天堂一二三| 麻豆国产成人av高清在线| 麻豆国产97在线精品一区| 亲密+磁力链接+下载| 亚洲三级在线观看| 久久精品中文字幕有码| 欧美成人午夜剧场| 亚洲免费午夜视频在线观看| 激情+国产+精品| 按摩轻轻挺进人妻| 久久综合久久88中字幕文| 人妻无码系列一区二区三区| 国产精品伊人久久久久久| 国产女主播尤物视频在线观看 | 欧美成妇人吹潮在线播放+下载 | 美日韩丰满少妇在线观看| 天堂在线一区二区| 最近2018中文字幕在线视频| 国产成人精品AV| 欧美成人+精品一区+在线观看| 黑外教弄人妻波多野结衣| 亚洲手机在线人成网站| 美女日批视频在线观看| 久久五十路丰满熟女中出| 中文字幕av一区中文字幕天堂| 99久久精品无码一区二区毛片| 成年人在线视频观看| jzzjzz日本丰满成熟少妇| 国产真实强被迫伦姧女在线观看| 日韩欧美国产一区二区在线播放| 99久久国产自偷自偷免费一区| 韩国精品一区二区三区在线观看 | 日本夜爽爽一区二区三区| 久久久久久久久久久91| 国产av麻豆一区麻豆二区| 国产日韩欧美综合精品一区二区| 欧美美女免费国产一区二区| 91成人在线视频| 鲁大师红楼影视在线观看| 麻豆果冻传媒潘甜甜丶| 亚洲国产91福利在线播放| 东京热一本大交乱HD| 日韩精品爆乳高清在线视频观看 | 毛片黄色美女视频观看| 精品久久久噜噜噜久久| 麻豆精品久久久久久久99蜜桃| 亚洲精品国产精品色诱一区| 蜜桃无码一区二区三区 | 国产精自产拍久久久久久蜜| 丰满少妇被粗大的猛烈进出视频 | 国产乱公伦媳在线播放| 91香蕉视频国产在线观看| 免费国产精品一区二区三| 国产在线观看精品一区二区三区| 欧美一级在线a级在线视频| bt天堂在线bt网| 国产VA免费精品高清在线 | 亚洲精品一区三区三区在线观看| 丰满人妻熟妇乱又伦精品劲| 国产精品亚洲欧美日韩在线观看| 正在播放懂色av| 91啦丨露脸丨熟女| 国产精品自产拍100在线观看| 国内精品在线播放| 日本顶级metart裸体全部| 蜜臀午夜精品视频在线观看| 欧美日韩精品人妻三区东京热| 国产美女免费无遮挡网站| 姝姝窝人体www聚色窝| 国产亚洲自拍av| 国产精品码在线观看0000| 亚洲黄色免费观看| av在线播放+亚洲+不卡| 91午夜福利欧美日韩一区二区| 国产原创在线观看福利精品| 日韩精品一区二区在线观看网址| 亚洲日韩欧洲无码av夜夜摸| 日本福利视频一区| 国产精品国产三级在线...| 国产免费无遮挡吸乳视频app| 尤物亚洲国产亚综合在线区 | 美女黄色免费网站| 拔插拔插海外华人永久免费| 欧美在线高清视频| 国产男女视频在线免费观看| 狠人干练合综合网| 77久久人妻视频| 大桥未久+高清无码| 67194在线观看高清电视剧| 久久久噜噜噜久久久精品| 国产精品福利网红主播| 极品少妇被猛的白浆直喷白浆| 欧美激情国产一区二区13| 四虎国产精品成人免费入口| 成人小视频免费看| 国产精成人品日日拍夜夜| 久久av+高潮+搞| 第一页中文字幕在线观看| 国产精品久久久久久亚洲影视公司| 无套内谢少妇露脸| 国产亚洲成人av| 淫色一非一区二区朝鲜| 久久精品国产免费观看三人同眠| 91porny首页入口| 中文字幕+乱码+中文字幕av| 少妇一区二区三区在线视频| 在线亚洲精品国产二区图片欧美| 国产精品99久久免费观看| 无码人妻精品一区二区蜜桃网站 | 国产一区二区三区精品在线| 中文字幕+中文字幕在线| 亚洲日本久久香蕉视频h| 另类天堂网不卡另类系列| 殴美亚洲精品182| 亚洲一区二区精彩视频在线观看 | 青青草无码伊人久久| 青草av.久久免费一区| 日本高清在线观看视频www| 精品国产美女av久久久久| 亚洲国产精彩中文乱码av| 淫色一非一区二区朝鲜| 黄色一区二区三区视频| 中文精品一卡2卡3卡4卡| 粉嫩美鮑国产一区二区| 精品99久久久久久| 非洲黑妞xxxxhd精品| 欧美在线色视频在线观看| 在线看片免费人成视频国产片| 秋霞国产精品123区| 中文字幕三级在线视频一区二区| 亚洲成色777777女色窝| 国产+口爆+绿帽| 亚洲日本制服丝袜诱惑在线| 狠狠躁18三区二区一区| 亚洲+少妇+专区| 日本精品婷婷久久爽一下| 欧美三级韩国三级日本播放| 亚洲国产日韩欧美在线播放| 中文天堂在线播放| 国产热a欧美热a视频在线观看| 91无人区乱码卡一卡二卡| 制服丝袜第一页在线| av一区二区无人区在线观看| 97成人精品区在线播放| 国产精品欧美中文字幕在线观看| 精品日韩在线播放| 18+在线观看网站| 欧美日韩亚洲一区二区三区一| 亚洲+视频+久久| 加勒比色综合久久久久久久久| 国产+另类+乱片| 日本精品videosse×少妇| 国产男女猛烈视频在线观看麻豆 | 天天+来吧综合+亚洲| 欧美黄色激情视频| 免费AV在线播放| 色婷婷噜噜久久国产精品12p| 日本+视频+亚洲| 欧美日韩视频在线观看一区| 精品国产成人在线一区二区| 国产偷国产偷av亚洲清高| 17c在线观看免费播放电视剧大全 精品人妻艳妇嫩草AV少妇 | 熟妇全身大保健(对白)| 在线观看片免费人成视频播放| 鲁大师日韩MV在线观看| 精品久久久久中文字幕app| 日韩av中文字幕国产精品 | 国产黑丝在线视频| 欧美偷窥清纯综合图区动图| 已婚少妇露脸日出白浆| 成人av网站在线观看免费| 色视频免费在线观看| 美女在线视频黄色免费网站| 成人国产精品福利| 国产视频一区二区在线播放| 欧美日韩激情在线观看免费| 不卡av中文字幕| 婷婷久久久综合一区二区三区| 天堂资源wwwav啪啪| 黄页免费观看一区二区三区| 国产乱淫av蜜臂片免费| 国产精品久久久久久不卡盗摄| 安徽丰满少妇BBBBBB| 久久五十路丰满熟女中出| 欧美成人午夜剧场| 精品视频一区二区三区| 欧洲s码亚洲m码精品一区| 国产精品成人免费久久黄av片 | 国产无套白浆视频在线观看| 麻豆国产av一区二区三区| 精品亚洲77777www| 亚洲2017天堂色无码| 亚洲欧美一区二区三区四区五区 | 成人在线视频网址| 亚洲av成人国产精品动漫 | 粗壮挺进人妻水蜜桃成熟漫画| 无码综合天天久久综合网| 亚洲欧美综合在线观看| 国产成本人视频在线观看| 中文在线字幕免费观看电视剧大全| 国产免码va在线观看免费| 少妇孕妇丰满内谢视频 | 中国国产免费毛卡片| 四虎国产精品永久免费网址| 成人做爰A片免费看网站草莓 | 18禁美女黄网站色大片免费看| 午夜成人精品福利网站在线观看| 人妻精品一区二区在线视频| 日本入室强伦轩人妻HD| 在线一区二区三区视频| 91资源新版在线天堂成人| 亲子乱一区二区三区的解决方法| 五月天天爽天天狠久久久综合| 亚洲一区二区免费在线观看| 制服丝袜+国产精品+中文字幕| 亚洲人成色99999在线观看| 亚洲永久精品ww47| 可以免费看日本黄色的网站| gogogo免费完整国语| ktv偷拍视频一区二区| 在线观看日本午夜高清美女| 肉体公尝HD中文字幕| 日韩av大片在线观看| 综合图区亚洲欧美另类图片| 91丝袜呻吟高潮美腿白嫩综艺| 风骚国产网站视频| 免费网站永久免费入口| 欧美日韩在线亚洲二区综二| 亚洲精品92内射| 97国产线视频在线观看| 成人做爰A片免费看网站草莓 | 国产精品区一区二区在线观看| 特级西西xXWWW无码| av亚洲产国偷v产偷v自拍| 国产av丝袜一区二区三区| 日韩av在线一区二区三区| 亚洲中文十区字幕在线播放| 国产精品成人亚洲777| 国产三级在线观看视频| 久久婷婷五月综合色精品| 日韩精品无码一区二区三区| 猫咪www免费人成网站无码| 韩国+欧美+国产| 亚洲精品无码播放| 日本视频在线免费| 日本无卡码高清免费v| 伊人久久久久久久久| 青草久久久国产线免观| 一区二区三区不卡在线观看| 偷青青国产精品青青在线观看| BBBBB女女女女BBBB| 国产麻花豆剧传媒精品免费| 无码人妻精品一区二区蜜桃网站| 一级香蕉视频在线观看| 日本三级视频在线| 国产男生午夜福利免费网站 | 天天爽夜夜爽国产精品视频| 国产亚洲精品久久久久久无| 精品123区免费视频国产成人 | 免费的国产成人av网站装睡的| 精品国产乱子伦一区二区三区最新章节 | 亚洲欧美精品午睡沙发| 亚洲视频在线播放一区二区三区| 日韩精品免费一区二区三区竹菊| 国产乱人伦精品一区二区_国产91在线 | 全部露出来毛走秀福利视频| 国产又黄又大视频| 国产精品二区视频| 精品无码成人久久久久久| 日韩在线视频在线观看| 亚洲女教师丝祙在线播放| 国产亚洲视频免费播放| 在线观看国产h成人网站| 亚洲国产三级在线观看| 91亚洲成a人片在线观看www| 出差+协和+中文字幕| 精品国产亚洲av制服丝袜高跟| 一本大道苍井空波多野结衣| 麻花星空天美mv免费观看电视剧 | 色综合久久88色综合天天人守婷| 国产精品久久久久久亚洲影视公司| 国产偷国产偷亚洲清高app| 久久精品国产免费看久久精品| 欧美日韩视频在线观看一区| 国产美女视频免费观看的软件| 日本sm一区二区三区调教| 日韩午夜激情视频| 亚洲噜噜狠狠网址蜜桃av9 | 国产伦精品一品二品三品哪个好 | 色偷偷人人澡人人爽人人模| 国内精品久久久久久影院| 91久久久久久国产精品| 午夜精品乱人伦小说区| 久久精品aaaaaa羞羞羞| 亚洲www久久久| 玖玖热麻豆国产精品图片| 国产女人久久精品视| 欧美黑人xxxx又粗又长| 久久久91精品国产一区二区三区 | 亚洲国产精品自在拍在线播放蜜臀 | 91在线/一区二区三区 | 在线观看人成视频网站不卡| 噜噜噜亚洲精品在线观看| 欧美日韩一区二区三区自拍| 亚洲精品国产剧情久久9191| 在线中文字幕视频| 色婷婷一区二区三区四区 | 一本色道婷婷久久欧美| 国产偷人妻精品一区二区在线 | 亚洲欧美日韩综合久久久久久| 成人区精品一区二区婷婷| 国产精品久久久久久亚洲影视公司| 一级香蕉视频在线观看| 亚洲精品456在线观看第一页| 免费网站观看www在线观看| av在线免费观看一区不卡| 国产日本欧美一区二区在线观看| 黑人巨大精品欧美视频一区| 亚洲日本乱码一区二区在线二产线| 欧美一区日韩一区| 亚洲乱码国产乱码精品精乡村|