精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測(cè)機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測(cè)就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因準(zhǔn)確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測(cè)基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測(cè),佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測(cè)產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測(cè)準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來(lái)了,就說(shuō)兩句!
請(qǐng)自覺(jué)遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測(cè)信息技術(shù)部

欧美国产中文字幕在线视频| 麻豆精品一区综合av在线| 久久久久蜜桃精品成人片| 亚洲第一毛片18我少妇| 国产成人福利av综合导航 | 黄色一级大片一区二区三区| 国产成人综合久久免费| 亚洲精品女同激情在线观看| 国产精品白嫩极品美女视频| 日韩视频在线国产成人| 亚洲av乱码国产精品观看麻豆 | 亚洲国产日韩精品二三四区竹菊| 翔田千里+无码+中文字幕| 狠狠综合久久久久尤物| 午夜福利+无码+自拍| 久久国产乱子伦精品免费乳及| 中文字幕av一区二区三区| 又粗又硬又刺激欧美视频免费 | 18精品毛片久久久久| 新欧美ssss亚洲综合| 丰满多毛xXXⅩ精品视频| 国产精品自在线拍国产| 欧美老妇bbwhd| 久久久久人妻一区精品果冻| 人妻仑乱少妇a级毛片| 亚洲乱码卡一卡二卡新区中国| 五月天婷婷缴情五月免费观看| 人妻无码熟妇乱又伦精品视频| 亚洲色图av在线| 无套内谢少妇露脸| 欧美精品久久久久久久久 | 国产91精品高清一区二区三区| 久久精品人人做人人综合试看| 这里有精品中文字幕在线视频 | 免费看无码网站成人A片| 欧洲精品欧美精品| 欧美一级淫片007| 亚洲中文十区字幕在线播放| 影音先锋+剧情+女仆| 爆黑正能量料最新| 亚洲欧美综合精品另类天天更新| 人妻黑人一区二区三区| 国产成人avxxxxx在线观看| 成年人在线免费观看视频网站| 少妇人妻偷人精品无码视频| 91精品欧美一区综合在线观看| 偷偷要色偷偷中文无码| 午夜福利精品视频免费看| 99热热久久这里只有精品| 自拍亚洲欧美日韩一区二区三区| 羞羞漫画+在线播放| 亚洲精品久久久久一区二区三区| 中文字字幕在线中文乱码| 日本精品婷婷久久爽一下| 国产欧美久久一区二区| 亚洲最大日夜无码中文字幕 | 7788在线观看免费高清电视剧 | 国产日产成人免费视频在线观看 | 久久免费少妇做爰| www黄色网址com| 久久亚洲精品成人无码网站| 欧美+香蕉网+五月| 乱人伦中文视频在线观看| 国产精品一区二区av麻豆| 久久中文免费视频| 亚洲欧美在线中文字幕不卡| 免费AV在线播放| 国产精品乱子伦XXXX| 亚洲依依成人精品| 五月天综合网缴情五月中文| 国产寡妇婬乱a毛片视频| 在线免费观看黄网| 成人av婷婷一区二区三区| 欧美成妇人吹潮在线播放+下载 | 国语精品深夜亚洲妇久久资源| 亚洲黄色免费观看| 巨大荫蒂视频欧美另类大| av久久悠悠天堂影音网址| 夜夜嗨av一区二区三区中文字幕| 国产精品毛片一区二区在线看舒淇| 亚洲国产高清aⅴ视频| 中文人妻av久久人妻水密桃 | 色情无码一区二区三区| 国产又粗又长又猛黄色视频| 成人做爰黄AA片免费看李晨视频| 中文字幕a片视频一区二区| 午夜小视频在线播放| 中文字幕第一区综合| 亚洲精品国产自在现线最新| 国产精品久久久久蜜芽| 久久婷婷丁香七月色综合| 麻豆精品人妻一区二区三区蜜桃 | 成视频年人黄网站视频福利| 18禁黄网站禁片免费观看女女| 99精品久久久久久琪琪| maturetube乱熟| 人妻共享互换多p| 免费播放高清毛片A片色情天雨水多| 高清国产一区二区三区四区五区| 亚洲欧洲中文日韩久久av乱码| 狠狠色噜噜狠狠狠狠97俺也去| 91这里只有精品| 四虎影院在线观看免费| 国产92成人精品视频免费| 日韩中文在线播放| 国产偷国产偷av亚洲清高| ⅹⅹⅹ黄色片视频| 97超碰在线免费观看| 少妇无码自慰毛片久久久久久| 日韩Aⅴ黄日韩a影片| 日本护士vivoes极品另类| 国产精品国产精品久久久久| 一区二区三区欧美精选视频| 九九热线视频精品99| 男女乱淫免费视频一区二区三区 | 182国产精品视频 | 国产视频xxxx| 极品白嫩丰满美女无套| 不卡一区二区三区四区| 黄色一级在线视频| 亚洲自偷自拍另类第1页| 亚州国产av一区二区三区伊在| www尤物无码AV一区二| 国产精品一区二区三区精品视频| 亚洲AV午夜精品无码专区| 美女黄频视频免费大全久久| 伊人69久久久久久综合国产| 黑人巨鞭大战欧美熟妇| 在线观看亚洲天堂视频网站| 日韩精品免费一区二区三区竹菊| 久久久99久久久国产自输拍| 色婷婷av久久久久久久| 人妻丰满熟妇av无码区免 | www.五月婷婷.com| 国产精品久久久久久久久久98| 国产一区二区狠干| 日本老头吃嫩草HD| 中文字幕一卡二卡三卡| 国产寡妇婬乱a毛片视频| 熟妇人妻无乱码中文字幕蜜桃| 中文精品人妻素人一级片| 亚洲欧美日韩综合在线免费观看| 狠狠躁天天躁综合网| 中文字幕在线日韩| 久久精品无码中文字幕| 国色一卡2卡二卡4卡乱码| 天堂欧美在线观看www| 国产盗摄精品一区二区酒店| 在线观看国产色视频网站| 成人午夜视频在线| 18+av在线免费| 成人福利综合视频免费视频| 亚洲精品国产精品国自产网站| 成人小视频免费看| 摸bbb揉bbb揉bbb视频| 久久人妻av一区二区软件| 中文免费高清在线观看电视剧| 日本一区二区不卡黄色视频| 中文字幕人妻无码专区app| 97久久精品人人做人人爽| 美脚恋足癖一区二区三区| 国产成人精品午夜福利女同| 亚洲另类欧美综合久久图片区| 精品久久久久久老司机97| 精品国产无乱码一区二区| 久久青青草原国产最新片完整| 久久综合精品亚洲| 国产热a欧美热a视频在线观看| 成人免费看黄网站在线观看| 欧美熟妇丰满xxxxx裸体艺术| 93国产精品久久久久久| 国产精品久久久福利| 国产亚洲精品a第一页| 久久亚洲色一区二区三区| 日本黄色免费视频| 免费+成人+国产| 亚洲中文字幕av一区二区三区| 国产偷国产偷亚洲清高网站| 下岗美妇的肉唇1一7章视频| 欧美亚洲国产日韩一区二区| 手机国产丰满乱子伦免费视频| 影音先锋+在线+2| 销魂美女一区二区三区视频在线| 国产女爽123视频.cno| 18+在线视频网站| 亚洲精品午夜视频| japanese熟女熟妇乱milf| 国产精品久久婷婷六月丁香| 成人在线视频网址| 91久久精品视频| 一区二区不卡av免费观看| 2021年国产精品自线在拍| 日韩亚洲国产欧美精品久久| 国产91勾搭技师精品| 欧洲视频免费网站在线播放| 亚洲无线一二三四区手机| 偷拍东北熟女乱xxxxx| 日韩和的一区二在线| 初撮丰满五十人妻| 亚洲永久免费视频| 老太太老b乱子伦| 国产精品视频麻豆| 国产女人叫床高潮视频+在线观看| 亚洲国产高清aⅴ视频| gogogo高清在线观看免费视频| 狠狠cao日日穞夜夜穞av| 午夜免费理论片A无码| 久久亚洲精品无码观看网站| 亚洲中文av字幕在线观看| 调教驯服丰满美艳麻麻在线视频| 丰满大乳奶做爰ⅹxx视频| 高h肉放荡爽全文寂寞少妇| 亚洲品质自拍视频网站| 久久精品国产亚洲av成人文字| 国产精品欧美久久久久久日本一道| 黄色亚洲一区二区三区视频| www九色com| 久久精品国产亚洲av码| 男人下部进女人下部视频| 国产免费又大又黄又粗在线观看| 日本熟妇japanese丰满| 电视剧大全免费全部在线观看| 中文字字幕在线中文乱| 亚洲精品乱码久久久久久| 欧美一区二区三区红桃小说| 亚洲欧美日产综合在线网| 国产精品久久久久久四虎| 中文字幕精品久久久乱码乱码| 久久久国产精品福利一区| 99久久婷婷国产综合精品| 97在线观看免费观看高清| 男女久久久国产一区二区三区| 国产+精品+空姐| 免费看日产一区二区三区| 最新国自产拍小视频| 美女在线观看免费视频网站| 国产美女精品中文网蜜芽宝贝| 国产精品日韩欧美亚洲另类| 夜夜摸日日躁欧美视频| 国产91精品久久久久91痣美人| 亚洲天堂2021av| 狠狠色丁香婷婷亚洲综合 | 国产Av一区二区三区| 久久99精品久久久久久园产越南| 91porny在线| 高清午色夜国产精品| 精品久久久久久久无码人妻热| 国产高清精品一区二区三区| 中文欧美日韩久久| 亚洲国产日韩精品二三四区竹菊| 日韩欧美高清字幕在线观看 | 人人妻人人澡人人爽曰本| 影音先锋熟女少妇av资源| 偷拍国精产品久拍自产| 欧美视频在线观看一区| 女同久久国产精品99国产精品 | 国产丝袜在线精品丝袜不卡| 夜夜狂射影院欧美极品 | 国产精品人人爽人人做av片| 在线+欧美+国产| 久久精品青草社区| 日韩美一区二区三区| 亚洲欧美国产综被窝蜜臀| www国产亚洲精品久久麻豆| 久久亚洲国产男女日穴精选| 99国产在线视频有精品视频| 99久久无码一区人妻a片蜜| 国产+精品+空姐| 91av在线视频观看| 孕妇丨91丨九色| 无码少妇一区二区三区免费| 久久国产露脸老熟女熟69| 一本岛高清乱码2020叶美 | 亚洲人视频在线观看视频在线| 成人毛片18女人A片免费观看成人在| 欧美超级乱婬视频播放| 国产目拍亚洲精品99久久精品| 综合久久婷婷丁香国产一区二区| 正在播放+日韩+无码| 亚洲AV一二三又爽又色又色| 美日韩丰满少妇在线观看| 欧美午夜一区二区福利视频| 极品老熟妇av一区二区| 韩国无码精品1区| 亚洲欧美中文日韩v在线观看| 在线观看特色大片免费网站| 久久男人av资源网站无码| 亚洲男人天堂一区二区在线观看| 绯色AV色窝窝无码久久免费酒店| 五月狠狠亚洲小说专区| 亚洲欧美激情五月在线观看| 国产精品中文字幕有码在线观看| 亚洲天天做日日做| www尤物无码AV一区二| 无码专区丰满人妻斩六十路| 中文天堂在线资源www| 中文字幕在线影视| 国产成人精品亚洲精品| 国产乱人伦无无码视频试看| 久久久青青草亚洲成人av| 免费精品中文字幕在线观看 | 无码囯产精品一区二区免费| 极品+普通话+磁力链接| 亚洲国产精品国自产拍色欲av| 午夜伦4480yy私人影院久久| 国产片淫级awww| 亚洲综合色区中文字幕| 高清无码不用播放器av| 亚洲国产精品不卡av在线| 国产人久久人人人人爽| 国产日产成人免费视频在线观看 | 国产成人三级一区二区在线观看一| 日韩精品在线视频观看| 久久久久久久曰本精品免费看| 牛牛视频一区二区三区| 亚洲日本在线在线看片4k超清| 国产成人a在线观看网站站 | 欧美成人午夜免费视在线看片| 成人污污污www网站免费| 久久婷婷人人澡人人喊人人爽| 国产三级不卡在线观看视频| 亚洲激情在线视频| 亚洲精品久久久久久久久久久| 欧美色欧美亚洲另类七区| 黄页免费视频网站国产一区| 亲密+磁力链接+下载| 91狠狠色综合久久久夜色撩人| 又粗又紧又湿又爽的视频| 亚洲最大av无码网站最新| japan丰满人妻videoshd高清 | 西西人体大胆无码视频| 欧美精品乱人伦久久久久久| 无码少妇一区二区三区免费| 国产精品视频免费看人鲁| 精品在线观看一区| 91n免费处女在线| 成人做爰黄AA片免费看李晨视频| 成人+国产+欧美| 凹凸69堂国产成人精品视频| 少妇一区二区三区无码视频| 近親伦一区二区三区| 熟妇精品一区二区三区四区 | 99精品国产一区二区三区麻豆| 在线亚洲97se亚洲综合在线| 成人做爰a片免费看网站找不到了| 波多野吉衣免费一区| 窝窝午夜精品国产| 97SE亚洲精品一区| 99久久久久久国产精品| 99国产精品熟女高清久久久久| 亚洲人妻内射一区二区三区| 日日噜噜噜夜夜爽爽狠狠视频| 北条麻妃99精品久久朝桐光| 亚洲精品无码不卡| 欧美一区二区三区在线| 欧美亚洲高清一区二区三区不卡| 93人妻人人做人碰人人爽| 又色又爽又黄还免费视频| 亚洲Av永久无码精品尤物| 色欲天天网站欧美成人福利网| 草草网站影院白丝内射| 国产美女网站18禁| 洗濯屋+无码+迅雷| 1024亚洲男人的天堂久久| 超级黄18禁色惰网站| 亚洲综合色自拍一区| 一本大道大臿蕉视频无码| 99福利资源久久福利资源| 天堂网www在线最新版资源| 亚洲中文字幕无码中字| 97碰成人国产免费公开视频| 色天天综合久久久久综合片| 成人国产精品一区二区免费看| 国产老师开裆丝袜喷水视频| 亚洲中文字幕人成影院| 91精品成人免费国产片| 中文字幕+乱码+中文字幕在线观看 | 男女污在线亚洲午夜视频| 亚洲精品7777777| 国产+r级+磁力链接| 无遮挡国产高潮视频免费观看互動交流| 日韩中文字幕国产| 国产内射xxxxx在线| 国产成人精品自拍| 国产精品中文久久久久久99清纯| 免费观看mv大片高清| 初撮丰满五十人妻| 1000部丰满熟女富婆| 波多野结衣《温泉人妻》| 99久久久99久久91熟女| 亚洲精品一区二区三区四区乱码 | 无码国产精品一区二区免费模式| 男人的天堂色偷偷| 亚洲欧美综合7777色婷婷| 成人精品视频中文字幕版| japanese熟女熟妇乱milf| 人摸人从澡从超碰三级| 留守熟妇一X88AV| 免费香蕉成视频人网站| 精品乱码久久久久久久| 麻豆天天躁天天揉揉av| 免费观看av网址| 亚洲欧洲日本在线| 狠狠精品久久久无码中文字幕| 欲色影视天天一区二区三区色香欲| 肉丝美足丝袜一区二区三区四| 日韩精品网站在线观看| 亚洲视频一卡二卡三卡四卡| 日韩视频欧美国产一区二区三区| 久久露脸国语精品国产91| 最近更新中文字幕2019视频| 好爽好湿好硬好大免费视频| 9.1+成人+看片| 无码h黄肉动漫在线观看网站| 最新日韩精品中文字幕| 91精品国产91久久综合| 免费污污污完整版网站| 国产婷婷一区二区三区久久| 亚洲人成77777在线播放网站不卡| 一卡二卡亚洲视频在线观看 | 亚洲专区在线91福利网| www欧美视频在线免费观看| 欧美+超清+无码| 久久黄色免费视频| 国产精品中文字幕有码在线观看| 短篇肉r车多肉r文| 欧美高潮潮喷奶水飞溅视频无码 | 欧美日韩成人一区二区| 97在线视频观看| 欧美人与动牲交xxxxbbbb| 夜夜添狠狠添高潮出水| 午夜看片在线观看| 人妻被按摩到潮喷中文| 天天爽夜夜爽国产精品视频| 亚洲另类国产精品中文字幕| 日韩69永久免费视频| 在线观看视频免费观看91| 一区二区三区在线观看精| 亚洲国产精品综合久久网各| 成人免费视频大全| 在线人视频观看免费| 天海翼torrent+下载| 亚洲+熟女+丝袜| 欧美成人三级在线观看| 真人做爰a片免费观看茄子视频| 欧美激情一区二区三区高清视频 | 精品国产制服丝袜高跟| 粗壮挺进人妻水蜜桃成熟漫画| 一区三区在线专区在线| 久久久久国色av∨免费看| 国产情侣极品精品一区| 小视频免费在线观看| 免费网站永久免费入口 | 国产福利一区二区精品秒拍| 黑人一区二区三区| 国产+另类+乱片| 男人的天堂色偷偷| 国产免费午夜福利久久久| 一级久久久久久久| 免费播放电视剧的| 99久久综合国产一区二区| 欧美一级三级完全免费观看| 精品国产自在在线午夜精品| japanese少妇jav| 国产羞羞的视频在线免费观看| а√天堂资源中文最新版地址| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解 | 美女一区二区三区网av| 午夜福利一区二区三区高清视频 | 麻豆国产97在线| 亚洲日韩一区二区一无码| eeuss鲁片一区二区三区| 怡红院av一区二区三区| 日本欧美国产一区二区在线观看| 精品深夜av无码一区二区老年| 成人毛片18女人A片免费观看成人在| 多人玩弄波多野结衣| 国产精品欧美激情在线播放| 中文字幕在线视频免费视频| 欧美亚洲国产手机在线观看| 无套内内射视频网站| JLZZJLZZ亚洲女人19| 精品国产成人a区在线观看| 一本一本久久a久久精品综合不卡| 成在人线av无码免费看网站| 99精品国产再热久久无毒不卡| 国产丨熟女丨国产熟女视频| 精品视频在线观自拍自拍| 亚洲不卡av一区二区三区| 国产极品美女高潮抽搐免费网站| 亚洲а∨天堂+久久精品| 肉大榛一进一出免费视频| 深夜福利1区2区3区欧美| 激情文学午夜视频在线观看| 国产成人精品久久一区二区| 日韩一级毛一片欧美一级| 噜噜噜噜香蕉私人| 国产免费激情视频在线观看| 欧美成人精品高清在线观看| 国产精品美女久久久久av爽李琼| 日本欧美国产在线视频一区| 强伦少妇A片视频| 日本一区二区视频免费| 日韩国产精品视频| 美女黄色视频网站在线观看| 午夜精品久久久久久久四虎美女版 | 国产精品成人一区二区三区吃奶 | 亚洲国产日韩欧美在线播放| 丫丫影院免费观看电视剧| 伊人久久大香线蕉综合bd高清| 国内大量偷窥精品视频| 国产亚洲精品久久精品6| 亚洲国产成人精品女人久久| 久久中文字幕一區二區三區| 欧美综合区自拍亚洲综合绿色| 国产精品卡一卡二卡三| 综合国产免费成人在线视频| 国产精品海角社区| 午夜国产精品入口| 日本熟妇色xxxxx日本免费看| 国产男生午夜福利免费网站 | 日本一级理论片在线大全| 欧美精品亚洲国产| 欧美精品乱人伦久久久久久| 东北少妇不带套对白| 韩国n号房视频+在线观看| 成在人线av无码免费看网站直播| 国产美女久久久久久久久久久久| 饥渴少妇高清videos| 欧美+日韩+免费| 欧洲高清转码区一二区| 国产乱人乱品精一区二区三区| 久久精品欧美亚洲一区二区三区| 国产+日韩+欧美在线观看| 国产+精品+美女| 国产三级不卡在线观看视频| 天堂网www在线资源网| 女同久久国产精品99国产精品| 美女精品a网站又爽又色 | 天堂网www最新版官网| 成人国产精品日本在线观看| 9999免费视频| 日韩高清在线亚洲专区小说| 污欧美视频在线免费观看| 精品三级在线观看| 国产原创在线观看福利精品| 亚洲国产精品一区二区久久hd| 狂躁欧美肥臀大BBBB| 狂躁欧美肥臀大BBBB| 日本免费无遮挡毛片的意义 | 欧美大片免费观看| 国产精品黑色丝袜在线观看| 日本二区三区黄色视频网站 | 久久夜色精品国产噜噜亚洲SV | 精品视频在线观看一区二区| 亚洲日韩av无码美腿丝袜| 国产91综合一区在线观看 | 国产伦理一区二区三区| 人人妻人人澡人人爽欧美一区双| 亚洲欧美另类在线视频| 五月天婷婷视频在线观看| 不卡一区二区三区四区| 日韩av免费在线看| 迅雷+无码+椎名| 天天躁日日躁狠狠躁av中文| 亚洲国产精品一区二区久久阿宾| 最新2019中文字幕第一页| 鲁大师红楼影视在线观看高清| 午夜福利亚洲专区欧美专区| 亚洲国产精品久久久久久久秋霞| 亚洲精品国产福利| 夫妻高潮淫语对白视频| 日韩一区二区天堂在线观看| 久久精品国产亚洲精品166m| 男女啪啪激情视频免费观看国产| 亚洲成品网站源码中国有限公司| 中文日本字幕mv在现线观看| 鲁大师红楼影视在线观看高清| 妙龄女被老汉压身小说作者其他小说| 18+视频在线看| 精品www久久久久久奶水| 国产寡妇婬乱a毛片视频| 成人免费视频网址| 亚洲乱亚洲乱妇无码麻豆 | 好吊色国产欧美日韩免费观看| 日韩永久精品视频免费wwwa| 国产福利第一视频| 我要看欧美一级黄色录像| 亚洲精品午夜视频| 国产视频手机在线观看| 91黄视频在线观看| 国产成人av乱码免费观看| 91久久久久久久久久久久| 国产麻豆剧传媒精品国产av| 小骚B好紧、日的好爽视频| 欧美成人黄色免费在线网站| 久久人人爽亚洲精品天堂| 久久只有精品视频国产最新地址 | 国产三级精品在线| 中文字字幕乱码视频高清| 秋霞无码久久一区二区| 国产精品嫩草影院久久久 | 国产九九久久99精品影院| 精品多人p群无码| 超高清欧美videossexopor | 大家可以在这里国产一级淫片a视频免费观看 | 久久久精品国产亚洲成人满18免费网站 | 69人妻精品丰满熟女区| 亚洲欧美精品一中文字幕| 无遮挡国产高潮视频免费观看| 美女日批视频在线观看| www国产+欧美| 4488CC.成人A片| 免费国产黄网站在线观看 | 成人免费观看cn| 无码AV最新无码AV专区| 国产成人精品a视频一区| 亚洲欧美成人久久一区| 国产亚洲综合区成人国产| 午夜免费福利视频| 欧美日韩亚洲精品一区| 鲁大师日韩MV在线观看| 国产女生高潮视频免费网站| 久久亚洲精品中文字幕波多野结衣| 国产区在线观看视频| 天堂8а√中文在线官网| 艳妇臀荡乳欲伦交换日本| 午夜三级av在线播放| 日韩欧美一级视频在线观看| 亚洲国产欧美一区二区三区一| 人与动人物xxxx毛片人与狍| 欧美日韩亚洲成人| 丰满+迅雷+中文字幕| 91久久久久久亚洲精品蜜桃| 亚洲精品久久久久久久观看| 亚洲中文字幕乱码av波多ji| 大桥未久+脚+磁力链接| 久久男人av资源网站无码| 亲近乱子伦免费视频| 免费播放高清毛片A片色情天雨水多 | 91天天综合免费看国产| 日韩乱码在线观看| 亚洲va韩国va欧美va| 国产精品一av一免费爽爽| 欧美国产激情一区二区三区| 黄色免费av网站| 日韩午夜理论免费tv影院| 日本顶级metart裸体全部| 亚洲欧美日韩视频一区二区| 337p日本欧洲亚洲大胆精蜜臀| 五月婷婷丁香在线| 亚洲一级视频在线观看视频| 国产欧美精品一区二区三区三| 一级黄色大片免费观看| 天天干天天色综合网| 五月激激激综合网色播| 国产精品免费视频色拍拍| 亚洲专区在线视频| 国产+资源+视频播放器| 国产高清精品软件| 国产精品露脸国语对白| 国产又爽又黄无遮挡免费视频| 亚洲国产日韩视频观看| 国产成人专区无广告在线| 在线观看jizz| 97成人精品视频在线播放| 国产精品久久久久一区二区国产 | 日韩av爽爽爽久久久久久| 日本护士被弄高潮视频| 日韩激情一区二区三区 | 日韩欧美亚洲国产精品幕久久久| 亚洲人成人无码www| 再深点灬舒服灬太大了快点91 | 81精品人妻一区二区三区蜜桃| 青娱乐精品视频在线观看| 乌克兰女人大白屁股ass| 国产精品zjzjzj在线观看| 藏精阁成人免费观看在线视频| 夜夜爽8888免费视频| 欧美日韩免费不卡激情在线视频| 亚洲伦无码中文字幕另类| 91午夜福利欧美日韩一区二区| 国产午夜福利精品一区二区三区 | 91黄视频在线观看| 久久久精品7777777| 波多野结衣潮喷视频无码42| 精品国产不卡一区二区三区| 国产福利一区二区精品秒拍| 国产精品卡一卡二卡三| 久久男人av资源网站无码软件| 精品+无码+白浆| 婷婷激情五月av在线观看| 亚洲一区二区三区av无码| 国精品产品区三区| 麻豆人妻换人妻好紧| 亚洲日韩精品一区二区三区| 日韩人妻无码精品一专区| 国产美女视频一区二区三区| 在线观看国产成人尤物av天堂| 免费国产精品一区二区三| 欧美在线一二三区| 日韩国产精品一区二区| 亚洲精品欧美精品在线观看视频| a亚洲va欧美va国产综合 | 亚洲免费网站观看视频| 十八禁在线观看视频播放免费| 国产欧美日韩综合精品一区二区| 久久精品国产亚洲av成人乳| 国产三级精品在线| 综合国产免费成人在线视频| 国产精品99久久免费观看| 国产精品96久久久| 日韩成人av免费在线观看| 亚洲亚洲人成网站网址| 色婷婷噜噜久久国产精品12p| 国产乱子伦精品免费视频| 国产午夜理伦三级好看| 一本无码视频一区二区三区| 警花av一区二区三区| 免费黄色在线网站| 最新在线免费观看av的网站| 高清无码成人视频| 亚洲国产成人久久精品大牛影视| 国产丝袜在线精品丝袜不卡| 国产av制服二区三区av系列| 国产精品久久久av免费不卡| 亚洲成人一区在线| 国内精品在线播放| 免费+高清+在线观看| 国产精品久久久久久久久久免| 国产又黄又大视频| 欧美老妇bbbwwbbbww| 国产乱码精品一区二区三| 成人做爰黄A片免费看陈冠希| 漂亮人妻被黑人久久精品| 色噜噜日韩精品欧美一区二区 | 国产激情久久久久99视频| 日韩三级成人av在线网| 高潮+国产+喷水| 精品卡一卡二卡3卡高清乱码| 在线播放五十路熟妇| 91精品日产一二三区乱码| 亚洲日本中文字幕在线四区| 亚洲乱码国产乱码精品精软件 | 色一情一区二区三区四区+国产| 国产精品一区二区av麻豆| 人妻激情乱人伦视频| 亚洲最新中文字幕成人| 午夜日本永久乱码免费播放片| 欧美精品一区二区三区一线天视频| 国产亚洲在线观看| 影音先锋熟女人妻| 日韩欧美成人网站| 欧美+成人+一区二区三区| 久久久久久夜精品| gogo人体做爰大胆视频| 欧美自拍另类欧美综合图片区| 日韩精品在线免费视频| 免费专区丝袜调教视频| 久久综激情丁香开心婷婷| 亚洲国产欧美日韩精品久久久| 中文字幕在线影视| 国产亚洲视频在线播放香蕉| 久久久久亚洲AV无码专不卡 | 日韩中文字幕在线观看一区二区| 91日本人妻精品一区二区| 天堂视频在线观看一二三区| 国产精品精品视频一区二区三区 | 牲交a欧美牲交aⅴ免费一| 久久97久久97精品免视看秋霞| 久久婷婷香蕉热狠狠综合| 2022亚洲无砖无线码| 成年人午夜免费视频| 欧美日本一区二区三区免费| av三级在线播放| 一本色道88久久加勒比精品| 欧美+国产+极品| 中文字幕在线视频免费视频| 中文字幕免费高清电视剧网站| 亚洲欧洲日韩综合| 新无码毛片一区二区有码| 亚洲成AV人片一区二区梦乃| 欧美在线99香蕉在线视频| 手机在线免费观看毛片av| 亚洲精品国产主播在线三区| 97精品国产自产在线观看| 女人18a级毛片精品人妻| 亚洲中文十区字幕在线播放| 不卡色老大久久综合网| 711公侵犯美丽人妻| www.国产一区二区三区av| 久青草国产在线视频_久青草免| 亚洲欧洲一区二区在线观看| 日本道二区免费v| 成人午夜高潮毛片| 在线天堂中文最新版www| 先锋影音+中文字幕| 久久亚洲成人x视频| 免费黄色片一区二区三区| 91精品国产成人观看免费九色| 欧美成人黄色免费在线网站 | va在线看国产免费| 亚洲男人天堂一区在线观看| 日韩av在线一区二区三区| 精品一区二区三区影院在线午夜 | 国产福利一区二区手机观看| 天堂网www天堂资源网| 日本熟妇色xxxxx日本免费看| 国产精品久久久久久久久久久久午夜片| 夜色www国产精品资源站| 欧美一区二区三区午夜视频| 99久久综合狠狠综合久久AⅤ| 一区二区视频在线免费观看| 中文字幕人妻在线中字| 欧美+在线+亚洲| 中文字幕+乱码+高清| 免费+高潮+国产| 日本社区在线观看| 香蕉国产线观看免费永久图片 | 国产亚洲一区二区三区综合片| 国产福利一区二区三区在线视频| 成人国产精品日本在线观看| 日韩欧美亚洲综合久久影院| 天天爽夜夜爽精品视频婷婷| 国产不卡av免费在线观看| 亚洲午夜福利精品无码不卡| 欧美+日韩+在线高清| 国产欧美精品一区| 中文字幕+乱码+www| 国产精品久久久久久久久潘金莲| 麻豆美女丝袜人妻中文| 无码专区狠狠躁天天躁| 日本片黄在线观看免费| 久久久久国产精品亚洲欧美| 在线看片免费人成视频播| 亚洲精品在线兔费观看视频| 人体极品粉鮑欣赏91| 91av福利视频| 亚洲精品国产中文字幕在线| 国产亚洲精品久久久久久无| 日韩v亚洲v欧美v精品综合| 无码+剧情+动漫| 久久精品国产亚洲aa级女大片| 青青青草视频在线| 办公室制服丝祙在线播放| 成人免费视频国产免费麻豆| 国产美女久久久免费牲交| 17c一.起草看片| 热99re久久国超精品首页| 丝袜无码一区二区三区| 夜色毛片永久免费| 日韩国产高清在线| 国产成人精品免费视频| 国产+白浆+免费| 小视频国产在线观看网站| 成人版女007毛片| 亚洲精品国产中文字幕在线| 人人爽人人奭人人片AV| 大地资源二中文在线观看下载 | 真实乱视频国产免费观看| 亚洲一区二区无码影院| 国产在线观看禁18| 国产成人午夜福利高清在线观看| 欧美日韩国产中文字幕在线播放| 无码+调教+西瓜影音| 日韩精品成人亚洲欧美在线观看| 近親伦一区二区三区| 无码+磁力+日本| 欧美黄色免费视频| 337p粉嫩大胆色噜噜噜噜| 国产高清吃奶成免费视频网站| 久久久亚洲欧洲日产av| 亚洲欧洲精品成人久久av18| 亚洲911精品成人18网站| 国产黄色福利网站| 波多野结衣被躁50分钟| 白浆+国产+高潮| 国产91高潮流白浆在线麻豆| 免费国产精品黄色一区二区 | 伊人精品成人久久综合| 久久精品国产一级特黄片| 国产又大又黄又硬又爽的视频| 国产精品欧美精品日韩专区一乛方 | 亚洲人成人无码www| 亚洲成a人片在线播放| 欧美热久久这里只有精品| 国产+jk制服+在线| 尤物在线观看网站视频免费播放| 欧美孕妇孕交xxx| 99精品久久久久久琪琪| 一个人免费视频www在线观看| 熟女服务区免费一区二区三区| 一级特黄aa大片免费播放| 午夜黄色永久视频| 国产互换人妻5P| 国产一区高清视频在线观看| 国产欧美日韩亚洲一区二区| 亚洲视频制服丝袜在线观看| 久久久久国产精品亚洲欧美| 亚洲欧美日韩国产综合在线播放| 四虎永久在线精品免费网站| 精品一区二区三区影院在线午夜 | 亚洲欧洲免费黄色视频| rmvb+下载+在线播放| 美女网站免费久久久久久久| 日韩在线中文字幕| 精品无人区麻豆乱码1区2区| 国产一级视频在线| 八戒八戒在线www视频中文| 久久人人爽人人爽人人av| 影音先锋熟女少妇av资源 | 日本成人中文字幕| 日韩精品av在线免费观看| 亚洲精品国产福利| 爆黑正能量料最新| 亚洲成av人片天堂网无码】 | 亚洲欧美日韩_欧洲日韩| 人妻av无码专区久久| 亚洲国产欧美另类| 久久久国产精品福利一区| 大桥未久+无码+bt| 久久99精品久久久久久园产越南| 农村末发育av片一区二区| 亚洲高清av在线| 久久五十路丰满熟女中出| 欧美+视频+中文字幕| 成品片a免费入口麻豆| 无码中字视频网址大全| 美女视频图片久久黄网站| 影视av久久久噜噜噜噜噜三级 | 亚洲综合天天夜夜久久| 贵州小少妇BBAABBAA视频| 78色淫网站女女免费| 蜜臀久久99精品久久久久久婷婷| 日本丰满人妻久久久久久| 成年美女黄网站色大片免费看| 成人亚洲国产精品一区不卡| 17c在线观看免费高清电视剧下载 五月天婷亚洲天综合网手机 | 国产成人在线精品| 男女日批在线观看| 国产少女免费观看电视剧字幕大全下 | 黑丝+国产+在线视频| 国精品午夜福利视频不卡| 奇米777四色成人影视| 777777亚洲和欧洲尺码表| 中文在线8资源库| 国产福利一区二区精品秒拍| 成人国产精品久久| 四虎影视无码永久免费| 久久精品国产亚洲av桃花av | 国产乱子经典视频在线观看| 香蕉视频在线观看黄| 五月天+婷婷+亚洲色| 久久男人av资源网站无码软件| 亚洲另类国产精品中文字幕| 久久久欧美国产精品人妻| 久久精品免费国产大片| 欧美+日韩+免费| 久久久久久久国产精品免费| 精品视频中文字幕| 国产+日产+欧美| 啊灬啊灬轻点第一次和外国人| 色偷偷色噜噜狠狠网站30根| 18禁国产精品久久久久久网站| 久久无码av中文出轨人妻| av动漫在线观看一区二区 | 色综合久久综合欧美综合网| 日韩丰满少妇无吗视频激情内射 | 按摩+无码+中文| 久久99久久99久久综合| 日本高清毛片中文视频| 中文无码一区二区不卡AV| 深夜影院在线观看| 精品国产三级大全在线观看| 免费看无码网站成人A片| av影片在线观看| 公侵犯美丽人妻一区二区| 久久亚洲精品国产精品紫薇| 国产a视频精品免费观看| 最新国产成人av网站 | 99热九九热精品在这里做| 在线播放极品尤物魔鬼身材| 久久99精品.久久久久| 亚洲理论中文字幕| 国产乱码精品一区二区三区四川| 韩国精品久久久久久无码| 亚洲+视频+久久| 91精品国产人妻国产毛片在线 | 亚洲区欧美日韩综合| 国产一区+欧美+综合| 2021精品国产自在现线看| 伊人色综合久久天天小片| 7777影视大全免费追剧小别离| 久久久久久国产精品| 一本色道久久88综合日韩精品| 免费网站在线观看大全电视剧| 天海翼+无码+磁力| 波多野结衣一区二区三区四区| 国产片淫级awww| 精品国产不卡在线观看免费| 18+sexporn| 精品深夜av无码一区二区老年 | 久久综合狠狠狠综合图片| 亚洲精品国产av成拍色拍婷婷 | 日韩激情一区二区三区| 久久久久久九九99精品| 合家欢下册公交车yiyu| 天天摸夜夜添狠狠添高潮出水| _97夜夜澡人人爽人人喊_欧美| 岛国+激情+无码| 欧美日韩中文国产| 国产高清乱理伦片中文小说| 91社区在线播放| 国产精品二区一区二区aⅴ污介绍| 少妇被爆c白浆911爆料| 欧美激情视频免费| 久久久久久久久久久久中文字幕| 日本五十肥熟交尾| 久久99国产精品黄色片| 亚洲成aⅴ人片在线观| 欧美日韩一级片在线免费观看 | www.97色色| 成年人在线视频观看| 亚洲乱码国产乱码精品精男男 | 国产一区高清视频在线观看| 精品国产一级片在线观看| 在线精品视频一区二区三四| 日本中文字幕亚洲乱码| 欧美色欧美亚洲另类七区| 国产精品久久久久一区二区国产| 国产成人av网站网址| 国产素人在线观看人成视频| 亚洲va久久久噜噜噜熟女软件| 国产激情久久久久熟女老人| 91视频国产一区| 中文精品一卡2卡3卡4卡 | 久久精品国产一区二区三区| 在线观看日本午夜高清美女| 99久久免费精品国产免费…| 亚洲码欧美码一区二区三区 | 色偷偷色噜噜狠狠网站30根| 男女做爽爽爽网站| 国产在线高清精品一区免费| 18禁国产精品久久久久| 日韩精品成人综合在线视频| 我们好看的2018视频在线观看| 高潮+刺激+爽av| 99久久国产综合精品女同| 国产亚洲精品第一综合不卡| 97国产精品久久| 中文字幕韩国欧美视频在线| 午夜精品一区二区不卡二卡| 91丨九色丨黑人外教| 99久久国产综合一区二区| 无码+四十路+番号| 色欲色欲久久综合网| 国产精品欧美二区66| 国产精品久久久久久久久久98| 中文天堂在线资源www| 久久精品国产字幕高潮| 麻豆国产VA免费精品高清在线| 成人做爰黄AA片免费播放贝微微| 免费乱理伦片奇优影院| 亚洲精品久久酒店| 亚洲一级免费毛片| 亚洲精品久久久无码av片软件| 洗澡被公强奷30分钟视频| 一本大道精品视频在线| 欧美一区日韩一区| 精品区一区二区三区| 成人精品综合免费视频| 夜夜国自一区+1080P| 大地资源二中文在线官网| 精品欧美一区二区精品久久| 小黄鸭+av导航+在线| 久久久久国色av∨免费看| 精品国产美女av久久久久| 人妻+日本+调教| 成人+国产+在线| 怡红院最新免费全部视频| 国产高清成人免费视频在线观看| 69大片视频免费观看视频| 永久免费无码日韩视频| 亚洲免费在线观看视频一区| 91日本人妻精品一区二区| 李宗瑞91在线正在播放| 国产精品一区二区av麻豆| 国产三级片在线视频观看| 免费观看真人视频直播7777| 久久99久久99精品免观看粉嫩| 影音先锋黄色资源| 国产精品91手机在线观看| 欧美日韩无线码视频在线播放| 天天av影院免费看| 国产精品尤物铁牛tv| 中文字幕+乱码+中文字幕av| 疯狂欧美大伦交乱| 人体极品粉鮑欣赏91| 国产av一区二区三区麻豆| 91精品久久久久亚洲国产| 亚洲美女高清无水av| 国产偷国产偷亚洲高清人乐享| 中文字幕精品亚洲无线码vr| 国产精品无需播放器在线观看| 成人H动漫精品一区二区无码软件| www.17c嫩嫩草色蜜桃网站| 深夜福利在线播放| 成人做爰高潮A片免费视频| 18+韩国女主播青草| 欧美视频日韩视频亚洲视频| 日日噜噜噜夜夜爽爽狠狠视频| 在线观看一区二区三区四区| 成人一区二区三区国产精品| 久久人人爽人人爽人人片dvd| 少妇高潮惨叫久久久久| 9久久国产精品免费视频| 国产99对白在线播放| hh网址高清无码| 《漂亮的女邻居5》hd| 亚洲老熟女乱综合一区二区| 久久99精品视频免费观看| 久久综合精品亚洲| 欧美成人午夜免费视在线看片| 黄页网站免费视频大全9| 一区二区三区国产在在线播放| 精品国产三级大全在线观看| 国产免费观看高清电视剧在线观看| 国产a视频精品免费观看| 国产av亚洲精品久久久久久| 精品人妻中文字幕在线| 扒开女人内裤猛进猛出流出白液| 婷婷久久久亚洲欧洲日产国码av| 久久精品国产亚洲精品166m| 国产va免费精品高清在线| 日韩少妇激情一区二区| 亚洲+欧美+视频| 91女人18片女毛片60分钟| 久久精品噜噜噜成人88aⅴ| 国产成人久久久77777| 中文字幕亚洲乱码1区2区| 自拍亚洲欧美日韩一区二区三区| 国产精品婷婷色综合www在线| 精品视频在线观看一区二区| 婷婷激情偷拍在线| 亚欧美日韩香蕉在线播放视频| 乱子伦息子一区二区| 青草久久久国产线免观| 国产+精品+美女| 日本最新免费二区| 2021精品国产自在现线看| 成人免费毛片东京热| 国产亚洲综合久久系列| A∨天堂精品视频| 中文有码视频在线免费观看| 四虎影视国产精品永久在线| 亚洲+自拍+高潮| 日韩三级伦理片色呦呦中文字幕 | 日韩亚洲欧美中文高清在线| 亚洲精品国产高清一线久久| 狠狠狠色丁香综合婷婷久久| 日本精品videosse×少妇| 久久人妻少妇嫩草av蜜桃漫画 | 影音先锋+剧情+女仆| 国产精品情侣呻吟对白视频| 中文字幕无码免费久久| 午夜成人免费影院| 国产极品久久7777777| 日本韩国欧美一区二区三区| 亚洲色成人一区二区三区| 成人+国产+免费| 亚洲人成人网色www| 久久国产午夜精品理论片34页| 欧美成人aaaa免费全部观看| 亚洲日韩一区二区三区| 免费无码又爽又刺激动态图| 人妻の乳を揉んで痴汉| 国产精品久久久久久久av福利| 射进来av影视网| 丰满大爆乳波霸奶| 欧美+成人精品+高清视频| 欧美xxxx做受欧美69| 亚洲国产日韩视频观看| 国产免费的又黄又爽又色| 在线观看成人国产三级网站视频| 日本高清在线一区二区三区| 69精品人人人人人人人人人| 日韩人妻少妇一区二区| 国产欧美福利v888av| 亚洲免费av网站| 国产在线观看禁18| 婷婷涩嫩草鲁丝久久午夜精品| 久久久国产免费观看视频| 精品国产一区二区三区日日嗨| 亚洲精品国产中文字幕在线| 中文字幕一区二区三区夫目前犯| 红莲两瓣夹玉柱最经典四句话 | 最新国产av最新国产在钱| 男人午夜免费视频观看在线| 亚洲精品久久酒店| 暴躁妹妹高清免费观看电视剧视频| 人妻+综合+激情| 无码少妇高潮浪潮av久久| 中文字幕在线观看网站| 足疗店无套内谢少妇| 中文日韩v日本国产| 综合成人欧美网日韩青椒网| 制服丝袜第一页在线| 亚洲熟妇成人精品一区| 国产在线观看www污污污| 2020天天谢天天吃天天麻豆v | 日韩欧美精品一区二区三区四区 | 漂亮少妇高潮a片xxxx| 四川少妇大战4黑人| 四虎成人永久在线精品免费| 吃瓜爆料+每日大赛| 一级美国无码高清| 女人高潮特级毛片| 久久无码人妻一区二区三区午夜| 2019日韩中文字幕| 高潮+国产+喷水| 国产一区二区三区久久久久久久 | 97国语精品自产拍在线观看| 日韩又大又长又粗又硬又爽视频 | 日韩av爽爽爽久久久久久| 免费国产精品自偷自偷免费看 | 中文字幕在线播放第一页| 日本一级待黄大片| 亚洲乱码国产乱码精品精姦| 国内大量揄拍人妻精品视频| 久久中文字幕一區二區三區| 国产精品岛国久久久久久| 人妻无码免费一区二区三区| 欧美精品亚洲精品日韩在线观看 | 在线观看日韩欧美综合黄片| 小黄鸭+av导航+在线| 亚洲女同精品一区二区| 久久久久午夜免费福利视频| 一区二区激情av| 国产suv精品一区二区69| 成人综合另类国产色视频| 欧美+国产+中文| 久久国产免费福利永久| 亚洲精品无码av专区最新| 国内自拍视频在线播放| 日韩av中文字幕国产精品| 亚洲男女内射在线播放| 怡红院av一区二区三区| 少妇高潮喷水久久久久久久久久| 成人亚洲xxx在线观看| 精品人妻中文字幕在线| 无码一区二区三区视频| 国产欧美日韩精品一区二区图片 | 久久久青草青青亚洲国产免观| 欧美+国产+中文| 制服丝袜美腿一区二区| 国产一区二区三区在线视頻| 中文字幕乱码亚洲无线三区| 99香蕉国产精品偷在线观看| 浪货趴ktv桌~H揉多p| 少妇无码自慰毛片久久久久久| 91国内精品久久久| 五月婷婷综合在线观看 | 又粗又黄国产视频.com| 成人做爰100部片需要多少钱| 欧美成人aaaaa片| 一区二区三区欧美视频| 美利坚合众国av| 欧美成人福利视频| 中文字幕人妻无码专区app| 99久久无码一区人妻a片蜜| 国产高清视频在线观看免费视频| 欧美一级一区二区三区| 国内少妇高潮嗷嗷叫在线播放| 国产精品极品美女自在线观看免费| 全程露脸老熟妇双飞| 美州a亚洲一视本频v色道| 日韩中文字幕免费| 亚洲精品美女久久久久99| 日本高清中文字幕一区二区三区| 国产精品+日韩精品+在线播放| 黄金网站app免费入口大全| 国产精品人在线观看| 五月狠狠亚洲小说专区| bt天堂在线bt网| 天堂www天堂在线资源网| 久久天天躁日日躁狠狠躁| 国产综合在线视频| 精品国产乱码一区二区三区99| 日韩中文字幕在线观看一区二区 | 99国产精品片久久久久久| 熟妇人妻av中文字幕老熟妇| 亚洲欧洲国产日韩在线不卡| 国产亚洲成年网址在线观看| 99久久国产综合精品女同| 搡老岳熟女国产熟妇| 偷拍一区二区三区| 久久伊人精品影院一本到综合| 色综合天天综合网站在线观看| 国产av一区二区三区高潮蜜| 国产免费不卡av黄色一级片| 精品国产亚洲av色噜噜| 国产精品毛片一区二区在线看舒淇| 中日韩无砖码一线二线| www.少妇影院.com| 久久夜色撩人精品国产小说| 日韩做a爰片久久毛片a片| 亚洲hdmi高清线| 国产精成a品人v在线播放| 韩国精品久久久久久无码| 伊人久久大香线蕉av超碰演员| 国产+激情+在线观看| 第一页中文字幕在线观看| 少妇奶水亚洲一区二区观看| 自慰系列无码专区| 人妻少妇无码精品专区| 337p粉嫩大胆色噜噜噜噜| 欧美三级黄色大片| 美女+免费+国产在线| 17c在线观看免费播放电视剧大全 精品人妻艳妇嫩草AV少妇 | 91久久久精品国产一区二区蜜臀 | 亚洲欧美韩国日本在线一区二区 | 成人免费国产精品视频| 最新在线精品国自产拍视频| 711公侵犯美丽人妻| 国产免费不卡av黄色一级片| 91在线中文字幕| KTV女技师啪啪无套内谢| 亲密+磁力链接+下载| 真人做爰视频成人观看| 国产自产21区在线观看| 久久久久久久91| 亚洲图片欧美在线看| 欧美视频精品免费覌看| 国产精品99久久久久久久久久久久 | 全部免费播放在线毛片| 美里麻衣无码番号| 国产麻豆成人传媒免费观看| 亚洲色欲久久久久综合网| 欧美日本一区二区三区| 丁香开心五月婷婷精品伊人| 国产乱xxxxx978国语对白| 51妺妺嘿嘿午夜成人A片| 青草久久久国产线免观| 激情综合五月丁香亚洲| 极品气质女神呻吟娇喘91| 激情视频免费在线观看| 亚洲国产欧美日韩精品久久久| 粉嫩av一区二区三区四区免费| 东北少妇BBBB搡BBB搡| 国产女主播尤物视频在线观看 | 玩两个丰满老熟女久久网 | 国产一国产二国产三| 国产激情综合五月久久| 午夜精品福利免费在线观看| 日韩a人毛片精品无人区乱码| 91dizhi永久地址最新| 洋妞+国产+在线播放| 免费在线观看一区| 欧美日韩亚洲精品一区| 日本乱人伦aⅴ精品潮喷| 中文娱乐网2222官网入口| 无码AV免费一区二区三区试看| 激情文学午夜视频在线观看| 中文字幕欧美精品一区二区三区| 亚洲熟女综合色一区二区三区| 丁香花小说手机在线观看免费| 波多野结衣精品一区二区三区| 国产综合在线观看免费视频| 国产精品久久久久久久久久久免费看| 一本到12不卡视频在线dvd| 99热在线精品免费全部my| 日本不卡在线视频二区三区| 无套内谢波多野结衣| 国产69精品麻豆| 香蕉视频在线网址| 国产成人免费av片久久| www欧美国产丝袜一区二区| 午夜av一区二区三区| 美女主播福利视频一区二区| 国产精品免费看久久久久久| 国产精品沙发午睡系列| gogogo高清在线观看+视频| 久久这里只有精品首页| 真实新婚偷拍Chinese| A片女女女女女女BBBB| 国产五月色婷婷六月丁香视频| 在线观看+免费+国产| 成人国产精品久久久按摩| 亚洲日韩欧美视频| 婷婷五月开心亚洲中文字幕| 亚洲欧美中文字幕在线net| 国产精品一区波多野结衣| 国产午夜亚洲精品国产成人最| 精品卡一卡二卡3卡高清乱码 | 九九精品在线观看| 西西人体大胆无码视频| 四虎精品寂寞少妇在线观看| 国产精品久久久一区| 黄色亚洲一区二区三区视频| 人妻仑乱少妇a级毛片| 欧美一区二区三区在线视频观看| 真实新婚偷拍Chinese| 52熟女露脸国语对白视频| 亚洲高清码在线精品av| 最近2019年中文字幕视频| 亚洲码欧美码一区二区三区| 中文字幕欧美成人免费| 亚洲日本在线观看| 亚州精品国产精品乱码不99按摩| 亚洲中文字幕无码中字| 亚洲色老汉av无码专区最| 欧洲无线码免费一区| 久久精品成人免费观看| 欧美激情精品久久| 国产免费网站在线观看| 国产女人18毛片水真多成人如厕| www887色视频免费| 国产精品久久久久久影视不卡| 欧美日本日韩aⅴ在线视频| 大地资源二中文官网| 国产精自产拍久久久久久蜜| 在线天堂中文最新版www| 欧美+在线+亚洲| 欧洲亚洲日本国产一区二区| 夜夜躁狠狠躁日日躁2022| 国产18高清视频在线观看| 欧美成人看片一区二三区图文| 天天澡天天揉揉av无码| 久久精品国产亚洲av成人乳| 四十路の完熟豊満无码| 久久五十路丰满熟女中出| 国产69精品久久久久777| 国产第一页浮力影院草草| 免费又黄又湿又爽的视频| 破了亲妺妺的处免费视频国产| 欧美视频日韩视频亚洲视频| 五月天天爽天天狠久久久综合| 熟妇人妻无乱码中文字幕真矢织江| 综合国产免费成人在线视频| 国产日韩精品欧美一区灰灰 | 久久精品视频亚洲| 99视频+国产日韩欧美| 久久大香香蕉国产免费网vrr| 明星乱淫免费视频欧美| 欧美日韩激情在线观看免费| 五月天综合网缴情五月中文| 久久精品aaaaaa羞羞羞| 国产成人亚洲精品青草| 欧美日韩国产一区精品一区| 尤物在线精品视频| 精品国产日韩欧美一级一区二区三区 | 一区二区午夜福利在线看| 国产精品日韩av网站国产女人 | 国产69精品久久久久久久久久| 视频毛片蜜桃视频| 日韩+欧美+导航| 亚洲色图av在线| 日韩激情免费视频一区二区| av黄色免费观看| 午夜在线不卡精品国产| 国产又爽又黄又无遮挡的视频| 永久黄网站免费在线观看 | 国产成人免费一区二区三区| 色欲蜜桃av无码中文字幕| 大粗鳮巴征服女教师| 五月天婷亚洲天综合网手机| 黄频视频在线观看| 国产一区二区三区成人欧美日韩在线观看 | 精工厂777免费观看电视剧| 亚洲乱码中文字幕综合234| 国产偷国产偷av亚洲清高| 国产成人精品午夜福利软件| 少妇精品无码一区二区免费视频| av狠狠色丁香婷婷综合久久| 成人午夜高潮免费视频在线观看| 伊人成人开心婷婷久久网| 亚洲丝袜制服诱惑第一区二区| 国产+免费+日韩欧美| 又色又爽又黄的三级视频| 久操视频免费在线| 亚洲人成在线播放网站| 久久久久国色av∨免费看| 亚洲一久久久久久久久| 欧美久久成人一区999| 欧美污视频免费在线观看| 国产又黄无遮挡在线观看| 一个人看www在线视频| 超薄丝袜足j好爽在线观看| 欧美日韩国产制服精品第二页| 亚洲永久网址在线观看| 国产97在线乱码中文乱码| jiZZjiZZjiZZ亚洲熟女| 精工厂777免费观看电视剧| 巨爆乳肉感一区二区三区| 8090+午夜福利视频+在线观看| 中文字幕中文字幕在线网| 亚洲精品av中文字幕在线| 在线+免费+国产| 国产三级免费观看| 成人午夜片免费在线观看| 国产色婷婷亚洲99精品小说| 国产一区二区色婬影院| 日韩在线看片免费人成视频播放| 亚洲麻豆91传媒| 久久99精品久久久久婷综合| 羞羞影院午夜男女爽爽在线观看| 国产无遮挡又黄又爽在线视频| 91久久久久久国产精品| 人妻无码系列一区二区三区| 久草在线免费资源| 99精品国产96久久久久久| 亚洲精品国产一区二区在线观看| 国产午夜福利片在线观看| 在线国产一区二区| 国产啊v在线观看| 免费国产污网站在线观看不要卡| 麻豆亚洲AV无码精品色尤物| 国产一级真人做受| 91资源新版在线天堂成人| 中文日产码2023天美| 日韩1区3区4区第一页| 8090成人午夜精品无码| 亚洲+熟女+丝袜| 久久久久亚洲十八禁精品国产| 最新av网站免费在线观看| 国产精品卡一卡二卡三| 三级欧美韩日大片在线看| 欧美大片免费观看| 欧美+中文字幕+国产| 河南熟女粗口叫床高潮| 亚洲欧美中文字幕变态另类| 国产成人综合欧美精品久久| 国产一区二区三区精品综合| 国产欧美日韩视频在线观看| 久久精品亚洲精品国产欧美| 欧美+国产+麻豆| 亚洲综合Av一区二区三区| 久草在线免费资源| 天天揉久久久久亚洲精品| 人摸人从澡从超碰三级| 日韩一区二区天堂在线观看| 美女羞羞视频网站| 青草av.久久免费一区| 免费看无码网站成人A片| 日韩精品免费视频| 亚洲一区二区三区高清在线看| 亚洲一区二区久久久| 国产一区二区三区四区精华| 国产精品久久久久久久久久久免费看| 国产精品爆乳在线播放| 亚洲毛片在线播放| 欧美一级黃色A片免费看蜜桃熟了| 尤物97国产精品久久精品国产| 69精品国产福久久久久久| 日韩裸体人体欣赏pics| 精品无人国产偷自产在线 | 精品美女一区二区三区瓯| 亚洲乱码尤物193yw| 四虎精品寂寞少妇在线观看| 亚洲日韩精品成人无码专区AV | 丰满的三级少妇欧美久久| 亚洲日本高清成人aⅴ片| 国产成人亚洲精品另类动态图| 夜夜爽一区二区三区| 亚洲爆乳www无码专区| 不卡一区二区三区四区| 国产一区福利在线免费视频| 99久久精品国产综合一区| 伊人久久大香线焦av综合影院| 欧美成人精品一级乱黄| 一个人午夜观看在线中文字幕| 久久精品99久久香蕉国产| 99久久免费精品国产72精品| 国产热a欧美热a视频在线观看| 亚洲日韩一区二区一无码| 国产+剧情+喷水| 免费观看又色又爽又黄的崩锅 | vvvv99日韩精品亚洲| 18禁美女黄网站色大片免费看| 日韩特黄一级片一区二区三区| 久久久麻豆精品一区二区| 日韩精品视频在线视频播放| 色一乱一伦一图一区二区精品 | www.国产成人在线免费看| 一区二区三区偷拍| jizzjizz在线| 国产又粗又长又猛黄色视频| 国产精品人成视频免费软件| 99re视频在线| 午夜福利精品视频免费看 | 国产九九久久99精品影院| а√天堂+地址+在线| 午夜精品一二三区| 亚洲国产香蕉视频精品一区| 日韩人妻无码精品专区综合网| 91在线精品亚洲一区二区免費資訊| 午夜福利人妻专区一区二区| 久久亚洲美女精品国产精品| 久久大香香蕉国产免费网vrr| 久青草国产在线视频_久青草免| 国产Av一区二区三区| 久久精品99久久香蕉国产| 夜夜爽一区二区三区| 国产99久久精品一区二区| 成人无码精品1区2区3区免费看| 探花风韵犹存少妇88AV| 久久精品欧美一区二区| 成年美女黄网站色大片免费看 | 久久精品国产亚洲av水密被窝| 亚洲成人在线视频观看| 日韩欧美国产一区二区在线播放| 国产模特嫩模私拍视频在线| 国产九九久久99精品影院| 精品视频在线免费观看一区| 爆乳喷奶水无码正在播放| 手机在线视频国产第二页| 在线观看免费www| 国产精品偷伦费观看一次| 大地二资源网高清免费播放| 国产一区日本二区在线观看| 水蜜挑国产成人精品视频| 四川乱子伦农村露脸| 国产内射xxxxx在线| 久久精品国产精品青草app| 久久ee热这里只有精品| 白丝在线看片av| 久久精品国产乱子伦| 亚洲情a成黄在线观看动| 九九热久久久99国产盗摄蜜臀| 欧美精品一区二区蜜臀亚洲| 亚洲旡码欧美大片| 少妇厨房愉情理伦片bd在线观看| 五月天婷亚洲天综合网手机| 麻豆产精品一二三产区区| 亚洲天堂男人在线视频精品| 欧美+日韩+免费| 香蕉视频免费网站| 色欲AV无码一区二区三区| 精品一区二区三区四区视频观看| 东北夫妻露脸69口爆视频| 全部免费播放在线毛片| 好大好湿好硬顶到了好爽视频| 国产精品亚洲А∨天堂2020| 91精品国产综合久久久久| 亚洲av成熟国产一区二区三区 | 在线国产一区二区| 黄色亚洲一区二区三区视频| 婷婷色九月综合激情丁香| 亚洲色图国产精品| 日韩精品人妻系列无码专区| 国产微拍精品一区| 色五月丁香五月综合五月4438| 精品亚洲永久免费aaaa| 日韩精品在线毛片| 日韩精品无码一区二区三区久久久| 深夜福利1区2区3区欧美| 成人在线观看一区| 日本在线a一区视频| 国语对白刺激在线视频国产网红| 国产欧美福利v888av| 国产8888888久久久久| 国产精品久久久久久久免费大片| 日本理论片免费观看在线视频| 在线观看免费www| 国产精品99一区二区三区| 国产乱人伦精品一区二区在线观看| 一本无码人妻在中文字幕| 国产成在线观看免费视频密| 亚洲国产日本韩国欧美mv| 最新69国产成人精品视频| 91天天综合免费看国产| 色欲色香天天天综合网站| 国产目拍亚洲精品99久久精品| 日韩精品视频在线视频播放| 日韩在线视频在线观看| www波多野结衣com| 99久久精品免费国产亚洲| wwwcom日本| 国产亚洲精品自在久久| 人妻中文乱码在线网站| 中文字幕日韩精品久久| 装睡被陌生人摸出水好爽| 国产精品人人妻人人爽人人牛| 亚洲国产专区校园欧美| 丁香色欲久久久久久综合网| 国产精品成人免费久久黄av片 | 色偷偷人人澡人人添老妇人 | 91最新视频在线观看网址| 国产欧美日韩一区二区国内| 麻豆果冻传媒精品+视频| 成a人影片免费观看日本| 大地资源中文第二页日本| 久久精品国产亚洲av久野外| 阿v天堂一区二区在线观看| 特黄aaa片在线观看| jiZZjiZZjiZZ亚洲熟女 | 亚洲成在人线av品善网好看| 午夜福利精品视频免费看| 99国产在线视频有精品视频| 亚洲欧洲美色一区二区三区| 97成人精品视频在线播放| 国产一在线精品一区在线观看| 亚洲第一区欧美国产不卡综合 | 国产精品熟女亚洲av麻豆| 国产精品免费看久久久久久| 东京热久久综合日韩精品| 日韩三级成人av在线网| 天天躁日日躁狠狠躁800凹凸| 亚洲精品无码久久千人斩探花| 国产精品av免费观看| 久久九九51精品国产免费看 | 国产午夜av在线一区二区三区| 国产精品破处一区二区三区| 九九久久精品免费观看| 天天澡天天狠天天天做| 国产精品又爽又粗又长又硬 | 你懂的国产高清在线播放视频| 【快穿】淫交任务(高h| 免费av资源网站在线观看| 91兰州熟女富婆露脸| 男人操女人免费看网站亚洲欧美| 国产+午夜福利+精品一区| 国产欧美成人xxx视频| 亚洲第一精品在线免费观看| 日本很黄色的网站一区免费观看| 四虎永久在线精品免费下载| 亚洲欧美视频在线播放| 亚洲+日本+高清| 狂躁欧美肥臀大BBBB| 欧美+日韩+成人| 视频二区制服丝袜人妻欧美| 欧美一区二区三区激情桃蜜臀| 亚洲熟女av一区二区三区软件| 韩国三级欧美三级国产三级| 综合影视中文高清| 伊人婷婷六月狠狠狠去| 少妇高潮惨叫喷水正在播放| 在线人人车操人人看视频| 12萝自慰喷水亚洲网站| 亚洲成人一区在线| 日韩Aⅴ黄日韩a影片| 精品国产乱码一区二区三区99 | 东莞+无码+下载| 国产精品丝袜一区二区三区 | 亚洲欧美国产日本一区二区| 蜜臀欧美日韩一区二区三区精品 | 亚洲综合欧美日韩| 粉嫩小泬18XXXⅩ高潮| 52avavjizz亚洲精品| 亚洲精品在线兔费观看视频| 懂色av蜜臀av粉嫩av分享吧最新章节| 天堂av资源网在线观看| 久久半精品国产99精品国产| 【乱子伦】国产精品.| 国产成人精品免费视频大全五级| 亚洲国产美女精品久久久久∴| 大家可以在这里国产一级淫片a视频免费观看 | 亚洲精品无码AⅤ中文字幕蜜桃| 亚洲av乱码国产精品色午麻豆 | 国产成人综合久久亚洲精品| 一本到综在合线伊人| 五月天综合网缴情五月中文| 婷婷在线精品视频免费观看| 亚洲永久免费视频| 国产精品毛片一区二区| 嫩草影院在线视频| 中文字幕+乱码+无忧| 天堂а√在线中文在线新版| 精品精品国产欧美在线| 色视频免费在线观看| 免费+网站+国产| 日韩a人毛片精品无人区乱码| AV天堂无码资源网| 年轻内射无码视频| 国产精品久久久久不卡绿巨人| 国产淫伦久久久久久久kkk| 东京热无码人妻系列综合网站| 国产又黄又粗又爽又色的视频| 一级做a爰片久久毛片16| 欧美一区精品中文字幕综合看片| 精品国产欧美一区二区三区不卡| 日韩欧美精品一区| 免费大片一级a一级久久三| 亚洲精品在线观看丝袜制服| 东北少妇不带套对白| 日韩欧美国产一区二区三区久久| 丁香五月婷激情综合第九色| 亚洲女教师丝祙在线播放| 已满十八岁免费观看电视剧软件下载| 日韩欧美一区二区三区五区| 日本护士被弄高潮视频| 欧美+成人+一区二区三区| 精品噜噜噜噜久久久久久久久| 黑外教弄人妻波多野结衣| 欧美日韩在线视频一区| 国产一区二区三区精品在线| 很黄的视频国产在线观看| 欧美大片18禁aaa片免费| 美女+免费+国产在线| 一级特黄aaaaaa大片| 国产日韩av在线| 宅男66lu国产在线观看| 西西444WWW无码视频软件| 视频一区二区中文字幕在线| 欧美又大又黄又粗高潮免费| 午夜福利视频二区| 日韩精品免费一区二区夜夜| 国产精品成av人在线视午夜片| 亚洲国产手机免费在线观看| www.欧美在线观看| 视频精品一区二区| 白丝+美女+高潮| 亚洲精品国产精品国自产网站| 亚洲色欲色欲欲www在线| 亚洲中文字幕一区二区麻豆| 野花社区www视频最新资源| 日本在线免费播放| 久久天天躁狠狠躁夜夜av不卡| 亚洲国产中文字幕| 精品午夜福利在线观看| 日日AV色欲香天天综合网| 爆乳喷奶水无码正在播放| 欧美精品久久久久久久久大尺度| 国产亚洲综合久久系列| 亚洲日本在线观看| 人人爽亚洲aⅤ人人爽av人人| 欧美3p在线观看| 欧美激情精品久久久久久多人| 18+sexporn| 52熟女露脸国语对白视频| 91欧美激情免费一区二区| 高清国产亚洲精品自在久久| 天堂网一区二区三区| 最新中文字幕免费在线观看| 色婷婷六月亚洲婷婷丁香| 亚洲精品成人天堂一二三| 51妺妺嘿嘿午夜成人A片| 国产又爽又猛又粗的视频a片| 国产成人精品一区二区在线观看| 东北女人毛多水多高潮视频| av国内精品久久久久影院| 天堂网www在线资源网| 久久国产亚洲精品超碰热| 黄色片网站在线观看| 动漫无遮挡羞视频在线观看| 九色在线观看视频| 中文在线8资源库| 国产精品美女.www爽爽视频| 久久婷婷综合激情亚洲狠狠| 国产女主播白浆在线观看| 国产精品久久久久久四虎| 白丝+美女+高潮| 美女视频一区二区在线观看| 成人欧美一区二区三区在线观看 | 精品区一区二区三区| 午夜精品乱人伦小说区| 亚洲国产精品久久久久婷婷青年 | 亚洲天堂日韩在线观看视频| 成人+免费+欧美| 国产高清精品久久久久久久| 中文字字幕乱码视频高清| 狠狠色噜噜狠狠狠狠五月婷 | 国产综合在线视频| 国产精品二区一区二区aⅴ污介绍| 国产成人免费高清在线观看| 精品人妻少妇一区二区三区不卡| 中文字幕乱码一区av久久不卡| 国产又粗又硬又爽又猛又黄视频| 国产精品夜夜爽7777777| 狠狠噜天天噜日日噜无码| 狠狠躁夜夜躁人人爽天天不卡| 国语对白刺激在线视频国产网红 | 少妇孕妇丰满内谢视频| 高潮+白浆+喷水| 迅雷+无码+椎名| 午夜成人免费影院| 亚洲一区二区经典在线播放 | エッチなH0930人妻斩| 欧美一区二区视频国产精品| 99久久婷婷国产综合精品草原 | 色综合天天综合天天摸天天爽| 黄色一级在线视频| 97碰成人国产免费公开视频| 免看一级a毛片一片成人不卡| 99re在线视频这里只有精品| 久久久久久久久久韩国精品| 免费污污污完整版网站| 夜噜噜久久国产欧美日韩精品| 淫语骚话高潮脏话HD| 97精品人妻一区二区视频| 国产视频资源在线观看| 久久精品国产亚洲av成人乳| 中文字幕亚洲乱码1区2区| 一级做a爰片久久毛片a| 国产日韩在线欧美一区二区| 2022年国产精品一区二区| 国产薄丝脚交视频在线观看| 在线观看免费国产中文字幕| 国产亚洲精品香蕉网九色| 日韩在线欧美在线| 青草视频在线观看视频| 亚洲a∨无码精品色午夜| 五月狠狠亚洲小说专区| 自拍偷亚洲产在线观看| 亚洲女教师丝祙在线播放| 毛片网站免费在线观看| 欧美日韩大片中文字幕在线观看| 国产+日产+欧美| 亚洲欧洲AV无码区玉蒲区| 真人抽搐一进一出视频| 在线日韩中文字幕av网站| 欧美+日韩+精品久久久| 吃瓜爆料+每日大赛| 男人+高清无码+一区二区| 在线v片免费观看视频| 日韩在线亚洲欧美另类青青 | 女人抽搐喷水高潮国产精品| 亚洲午夜福利精品无码不卡| 国产精品网红尤物福利在线观看| 伊人婷婷六月狠狠狠去| 伊人婷婷六月狠狠狠去| 一级国产特黄bbbbb| 国产熟妇另类久久久久久| 手机国产丰满乱子伦免费视频| 中文字幕日韩一区二区三区不卡| 丰满少妇被猛烈进入试看| 国产成人久久久77777| 免费看日产一区二区三区| 四虎影视无码永久免费| 久草热久草热线频97精品| 91精品国产综合久久精品图片| 18禁美女黄网站色大片免费看| 神马影院手机在线观看| 精品人妻毛片久久久久久| 国产欧美一区二区三区午夜精品 | 日本入室强伦轩人妻HD| 亚洲精品欧美黄片在线免费看| 亚洲国产精品久久久久婷婷图片| 日本不卡视频一区二区三区 | 人妻少妇邻居少妇好多水在线| 日本最新免费二区| 亚洲精品一区二区成人| 欧美日韩国产一区精品一区| 国产精品不卡av在线播放| 黄色亚洲一区二区三区视频| 亚洲成a人片在线播放| 午夜福利国产精品久久| 夜夜嗨av一区二区三区中文字幕| 亚洲а∨天堂久久精品喷水| 999精品视频在线| 大伊香蕉精品视频在线| www.超碰在线观看| 少妇高潮喷水视频| 最近黄色国产mv在线观看| a亚洲va欧美va国产综合| 美女高清久久久久久小视频| 美女国产毛片a区内射| 色欲天天网站欧美成人福利网| 亚洲永久精品ww47| 国产内射xxxxx在线| 中出老熟女中文字幕| 欧美黑人欧美精品刺激| 国产午夜夜伦鲁鲁片| 亚洲狠狠色成人综合网| 经典三级头第一页免费AV| 9久久国产精品免费视频| 国产精品午夜久久小视频| 国产欧美日韩综合精品二区| 成人做爰A片免费播放乱码| 污污视频网站在线| 国产精品一二三区在线观看| 国产激情99精品久久一区二区| 一个人在线观看免费视频www| 国产亲伦免费视频播放| 亚洲第一美女精品久久久久| 日日鲁夜夜如影院| 丰满大爆乳波霸奶| 最近最新的免费中文字幕| 99久久免费只有精品国产| 无码+四十路+番号| 激情无码人妻又粗又大中国人| 日韩欧美国产一区呦呦91| 91精品啪在线观看国产81旧版| 中文字幕一区二区三区久久网站| 国产成人欧美一区二区三区在线| 亚洲精品免费观看| 女人做爰高潮全黄| 欧美日韩精品一区二区精品| 国产乱人伦无无码视频试看| 又黄又爽又粗又硬又免费的视频| 亚洲风情亚aⅴ在线发布| 超碰香蕉人人网99精品| 99在线免费观看| 无遮挡国产高潮视频免费观看| 漫蛙漫画(网页入口)| 亚洲国产精品成人久久久久| 中国做爰国产精品视频| 1024亚洲男人的天堂久久| 成人无码精品1区2区3区免费看| 日韩精品久久久久久希崎杰西卡| 精品国产乱码久久久久久蜜柚 | 日韩精品一卡2卡3卡4卡新区| 凹凸日日摸日日碰夜夜爽孕妇| 最新国产精品拍自在线观看| 欧美日韩国产三级| 天天鲁一鲁摸一摸爽一爽| 国产原创在线观看福利精品| 亚洲国产精品自在拍在线播放蜜臀| 两个人日本www免费版| 不卡一区二区在线视频观看| 色婷婷一区二区三区四区| 中文字幕亚洲欧美日本懂色| 成人免费视频大全| 国产免费一区二区三区视频| 日韩av高清在线观看| 国产精品一区二区三区九一麻豆| 久9久9精品视频在线观看| 一区二区三区欧美| 国产精品又爽又粗又长又硬| 成人做爰100部片免费下载| 日韩av在线播放+免费| 狠狠色噜噜狠狠狠狠777米奇小说| a片+磁力+下载| 日本真人做爰a片| 蜜臀国产精品久久久久久| 亚洲国产日韩精品二三四区竹菊| www.少妇影院.com| 国产99久久精品一区二区蜜| 美女互摸视频一区二区三区| 天天av影院免费看| 中文字幕精品久久久乱码乱码| 欧美日韩亚洲一区二区三区一| 久草香蕉在线视频国产乱码精品一区二区三上 | 香蕉97超级碰碰碰免费| 开心+婷婷+五月天| 155fun黑料热点事件| 日韩1区3区4区第一页| www夜片内射视频日韩精品成人| 香蕉视频免费网站| 97无码精品综合| 久久精品99精品国高潮| 欧美日韩国产高清一区二区三 | 熟女老阿V8888AV| 国产成人精品免费视频大全五级| 亚洲一区二区三区黄色| 国产女主播精品大秀系列| 亚洲+男人的天堂+一区二区| 国内精品久久久久久久影视麻豆 | 久久婷婷五月综合色99啪ak| 成人看片黄a免费看视频| 精品欧美高清视频在线观看| 一个人在线观看国产精品www | 看黄a大片爽爽影院免费无码| 一区二区福利视频| 一级美国无码高清| 内射美女黄色大片免费观看| 国产精品一区二区三久久不卡| 欧美人与动物胶配方有几种| 国产精品久久久久久久久白女| 青草青草久热国产精品| 亚洲欧美另类激情| 午夜免费无码福利视频| 久久99国产综合精品免费99| 欧美色视频在线观看| 国产成人精品久久一区二区| 大战丰满大白屁股女人| 欧美日韩妖精视频| 欧美精品一区二区三区蜜桃臀| 国产亚洲综合区成人国产| 成人亚洲xxx在线观看| 国产精品爆乳在线播放| 蜜臀久久99精品久久久久久婷婷| 日韩精品中文在线观看一区| 美利坚合众国av| 2022亚洲无砖无线码| 99国产精品久久久久久久久久| 国内精品国产成人国产三级粉色| 日韩欧美在线精品| 国产麻豆剧传媒精品国产av | 亚洲av色香蕉一区二区| 国产传媒麻豆剧精品av国产 | 色综合久久久天天综合网| 99国产欧美另类久久片| 最新国产av最新国产在钱| 国产91精品高清一区二区三区| 91麻豆国产精品91久久久久| 亚洲综合无码一区二区三区不卡 | 国产嫩苞又嫩又紧AV在线| 韩国三级欧美三级国产三级| 久久人妻少妇嫩草av红粉| 中文字幕+在线观看+永久| 野花社区视频在线观看| 无码少妇一区二区三区免费| 日韩亚洲欧美中文高清在线| 99久久免费国产精品6| 日韩av手机在线| 欧美日韩中文字幕在线xxx| 丰满人妻熟妇乱又仑精品| 精品国产亚洲av制服丝袜高跟 | 可以看国产精品视频的网站| 国产精品久久久久不卡绿巨人| 欧美区亚洲区国产区一区二区| 696息子精品一区| 四虎影院在线观看免费| 亚洲码欧美码一区二区三区| 欧美精品v国产精品v曰韩品| 黄色一级在线视频| 久久精品国产自清天天线| 特级西西444WWS高清视频| 青青草草青青草久久草| 欧美一二三区在线观看视频 | 日韩欧美国产另类久久久精品| 国产麻豆乱码精品一区二区三区| av一区二区在线播放| 亚洲精品国产A久久久久久| 老太太老b乱子伦| 国产成人三级在线视频网站观看| 在线观看一区二区国产欧美 | 久久精品农村毛片| 亚洲人交乣女bbw| 亚洲欧美成人久久一区| 日本免费一区二区三区最新| 中文在线字幕免费观看电视剧大全| 色一情一乱一乱一区免费网站| 国产乱码久久久久久| 国产伦理久久精品久久久久| 国产精品中文久久久久久99清纯| 精品卡一卡二卡3卡高清乱码| 可以在线观看免费av的网站| 高潮+白浆+国产| 国产精品欧美精品日韩专区一乛方| 自在自线亚洲а∨天堂在线| 中文字幕网视频一区在线观看| 99久久综合国产一区二区| 在线黑人抽搐潮喷| 免费在线观看一区| 亚洲vr国产美女精品久久久久| 国产一区二区三区免费观看在线| 亚洲国产福利成人一区| 天堂一区二区mv在线观看| 国产suv精品一区二区88l| 亚洲国产精品久久一线app| 欧美高清在线免费观看视频 | 国产欧美一区二区三区片| 太骚了全程对白Spa69| 成年日韩片av在线网站| gogogo免费完整国语| 午夜福利片1000无码免费| 日韩人妻无码免费视频一区二区三区| 久久亚洲春色中文字幕久久久| 午夜免费福利美女刺激视频| 99国产精品中文字幕在线观看| 2022av视频| 久久久精品人妻久久影视| 国产成人久久av免费高清密臂| 天天躁日日躁狠躁欧美| 狠狠躁夜夜躁人人躁婷婷91| a级老太婆毛片老太婆毛片| 亚洲一区二区经典在线播放| 久久嫩草影院免费看| 久久婷婷五月综合色精品| 日日躁你夜夜躁你av蜜| 亚洲中文字幕乱码av波多ji| 国产精品日韩欧美一区二区| 国产呦交精品免费视频| 交换一区二区三区va在线| 99久久国产综合精品五月天喷水| 久久亚洲精品无码观看网站| 玩两个丰满老熟女久久网| 欧美xxxx做受欧美69| 日韩精品――中文字幕| 亚洲成aⅴ人在线视频| 国产精品视频_区二区三区 | 少妇又色又爽又刺激视频| 青草伊人久久综在合线亚洲观看| 在线观看黄片免费入口不卡| 酒吧+天海翼+影音先锋| 99香蕉国产精品偷在线观看| 国内精品美女a∨在线播放| 人妻av天堂一区二区三区| 国产成人av三级在线观看 | 欧美黑人xxxx又粗又长| 无码+大胸+磁力| 国产成人亚洲欧美一区综合| 亚洲国产欧美一区二区三区丁香婷 | 无码人妻aⅴ一区二区三区玉蒲团| 欧美精品亚洲日韩aⅴ| 伊人色综合久久天天网| 18+在线观看视频| 午夜福利精品kkk在线| 丁香啪啪综合成人亚洲小说| 亚洲va久久久噜噜噜久久天堂| 欧美精品v欧洲高清视频在线观看| 欧美国产日韩在线一区二区三区| 欧洲无线码免费一区| 短裙公车被强好爽H吃奶视频| 国产+欧美+日产| 亚洲+欧美+视频| 91精品国产一区二区三密臀| 天堂在线网www在线网| 在线观看日韩中文字幕| 偷柏自拍亚洲综合在线| 亚洲国产精品一区二区久久hd| 少妇9999九九九九在线观看| 中文字幕在线日韩| 粉嫩小泬无遮挡BBBBB图片| 自拍+影音先锋+天堂网| 成人在线观看你懂的| 免费观看美女裸体网站| 成人嫩草97A片| 欧美一区二区三区四区91| 中文日产码2023天美| 亚洲+男人的天堂+一区二区 | 国产又黄又粗又爽又色的视频| 影视av久久久噜噜噜噜噜三级| 综合色区无码一区| 日韩精品一区二区在线观看网址| 日本69式三人交| 少妇特黄A一区二区三区| 国内精品伊人久久久久av一坑| 日韩免费无码一区二区视频| 农村熟妇高潮精品A片| 日本韩国欧美一区二区三区| 国语对白刺激在线视频国产网红 | 真实国产精品视频400部| 思思久热精品在线| 欧美视频免费观看午夜在线| 日本少妇又色又爽又高潮看你| 综合亚洲另类欧美久久成人精品| 国产高清精品一区二区三区| 国产精品白丝美女免费在线观看 | 波多野吉衣免费一区| 国产在线精品一区二区不卡| 中日韩无砖码一线二线| 亚洲一卡二卡三卡四卡无卡姐弟 | 久久精品无码中文字幕| 精品欧美高清视频在线观看| 最新高清中文字幕免费mv| 日本入室强伦轩人妻HD| 真实新婚偷拍Chinese| 韩国三级欧美三级国产三级| 99久久免费精品国产免费… | 天天鲁一鲁摸一摸爽一爽| 国产欧美日韩一区二区刘玥| 国产精品海角社区| 国产精品女同一区三区五区| 农村乱子伦毛片国产乱| 曰韩内射六十七十老熟女影视| 午夜福利国产小视频在线| 免费+无码+av网| 国产在线乱码一区二三区| 欧美一级黃色A片免费看蜜桃熟了| 亚洲婷婷五月综合狠狠app| 韩国+欧美+国产| 九色porny视频| 少女国产免费观看高清电视剧大全| 亚洲第一狼人天堂久久| 久久国产精品——国产精品 | 欧美黑人欧美精品刺激| 欧美XXXBBB| 99久久精品国产综合一区| 国产欧美日韩精品一区二区蜜臀 | 2021年国产精品午夜福利在线观看 | 日韩精品av在线免费观看| 91大神精品在线| 日日摸天天摸97狠狠婷婷| 亚洲欧美综合7777色婷婷| 日本人六九视频69jzz免费| 国产精品一区二区三久久不卡| 一区二区三区四区亚洲| 国产免费午夜福利不卡片在线 | 白嫩老师肉体videosd| 国产ae86亚洲福利入口| 欧美午夜精品久久久久久白云| 亚洲国产成人精品女| 91麻豆精选国产自产免费观看| 先锋影音+中文字幕| 免费国产一级特黄久久| 一区精品在线观看| 国产黑丝在线观看| 丰满的三级少妇欧美久久 | 国产又色又爽无遮挡免费| 免费观看一区二区三区视频 | 999精品视频在线| 亚洲亚洲人成网站77777| 欧美热久久这里只有精品| 中文字幕在线看高清好看的电视剧 | 自拍偷亚洲产在线观看| 天天干天天干天天干| 中文亚洲精品字幕在线观看| 骚贷大ji巴cao死你| 国产又色又爽无遮挡免费| 神马久久久久久久久久久| 丰满少妇内射一区| 2021国产精品午夜久久| 久在线观看福利视频| 精品久久久久久久久久熟女| 国产又黄又粗又爽又色的视频| 懂色av蜜臀av粉嫩av分享吧最新章节 | 伦利理午夜理论片| 亚洲精品毛片一级| 久久99精品久久久久久不卡| 小黄鸭+av导航+在线| 国产综合色在线精品| 又大又粗又硬又爽黄毛少妇| 日本一区二区视频| 好男人资源在线www免费| 国产91精品一区二区麻豆观看| 91成人在线视频| 国产福利视频一区二区三区| 国产三级在线免费观看| 欧美日韩国产精品成人| 推油少妇久久99久久99久久| 五月天婷婷激情网| 酒吧+天海翼+影音先锋 | 在线亚洲一区二区| 韩国一级精品毛片| 99福利资源久久福利资源| 蜜臀精品国产高清在线观看| 日韩精品中文字幕久久臀| 日本猛少妇色XXXXX猛叫| 全程露脸老熟妇双飞| 790公侵犯美丽人妻| 樱花私人影院的电视剧特点| 一区二区三区日韩亚洲中文视频| 欧美日产国产精品日产| 国产在线高清精品二区| 精品96久久久久久中文字幕无| 午夜日本永久乱码免费播放片| 青草伊人久久综在合线亚洲| 国产精品自在拍首页视频8| 亚洲欧洲国产成人综合在线 | 中文人妻av久久人妻18| 日本高清视频一区| 国精产品99永久一区一区| 国产精品原创av| 国产欧美大片一区二区三区| 国产成人久久精品流白浆| 精品久久久久久中文无码| 日韩免费无码专区精品观看| 一点不卡v中文字幕在线| 国产精品久久麻豆一区二区三区 | 久久精品99久久精品香蕉网| 一边摸一边抽搐一进一出口述| 国产又黄无遮挡在线观看| 精品多人p群无码| 日本免费一区二区三区四区五区| 秋霞鲁丝片Av无码少妇| 国产精品原创av| 成人毛片视频免费看| 国产99对白在线播放| 国产一级精品理论片在线| 亚洲欧洲日产国无高清码图片| 国产精品美女久久久久aⅴ| 国产一区二区三区在线视频观看| 黄色一级大片在线免费看产 | 亚洲国产欧美在线成人aaaa| 日韩av免费观看一区二区三区| 农夫+导航+亚洲| 亚洲欧美日韩国产一区二| 99pao在线视频国产| 欧美日韩盗摄一区二区三区 | 日韩精品视频免费在线观看| 久久成人免费精品网站| 美女在线观看免费视频网站 | 宅女午夜福利免费视频| 欧美精品欧美极品欧美激情| 影音先锋+成人资源| 999国产精品欧美在线a| 自拍区小说区图片区亚洲| 日韩第一页视频在线观看| 欧美日韩国产动漫在线| 深夜福利小视频在线观看| 精品人妻人伦一二三久久久久| 日本高清在线不卡一区二区| 欧美一区二区在线播放| 午夜福利亚洲专区欧美专区| 大地资源_高清资源_中文 | 国产美女极度色诱视频www| 青青草无码精品伊人久久蜜臀| 国产黄片视频主播在线观看| 波多野结衣亚洲视频| 久久免费视频精品在线| 成人午夜精品一区二区张津瑜| 欧美成人+www+一区二区| 再深点灬舒服灬太大了快点91| 熟妇人妻系列AV无码一区二区| 久久久综合888免费视频| 亚洲日韩精品区二区av | 国产欧美成人精品www| 久久久国产免费观看视频| 青青草+深夜福利+免费观看| 日韩18中文字幕欧美在线| 欧美精品一区二区蜜臀亚洲| 日韩视频欧美国产一区二区三区 | 18禁美女无遮挡在线看| 成人做爰A片免费观看软件| 能免费在线观看av的网站| 嘟噜噜嘟噜噜跟大妈一样| 成人免费毛片男人用品| 污18禁污色黄网站免费观看 | 曰韩亚洲av人人夜夜澡人人爽 | 熟妇人妻系列AV无码一区二区 | av动漫在线观看一区二区| 亚洲美女+自拍+色| www.少妇影院.com| 别揉我奶头~嗯~啊~一区二区三区| 中文字幕欧美一区在线视频观看| 无码专区aaaaaa免费视频| 成年人黄页网站免费观看| 欧美一区二区日韩| 国产精品美女久久久久久av爽 | 精品美女免费视频wwxx| 风韵饥渴少妇在线观看| 欧美麻豆精品久久久久久 | 青青草国产午夜精品| 九色在线观看视频| 精品亚洲国产成人av在线| 欧美国产激情一区二区三区| 痴汉电车人妻被内谢下面很多水 | 国产女主播精品大秀系列| 亚洲精品日韩中文字幕久久久| 亚洲午夜久久久精品影院| 亚州国产av一区二区三区伊在| 亚洲精品无码播放。| 国产精品亚洲αv| 国产精品一区二区三久久不卡| 中文字幕+乱码+中文字幕电视剧| 亚洲成人久久一区二区三区| 人妻av中文字幕一区二区三区| 伊人狼人大焦香久久网| 素人fc2av清纯18岁| 99热在线精品免费全部my| 青草久久人人97超碰| 久久久久久久国产精品影院| 夜噜噜久久国产欧美日韩精品| chinese开小嫩苞videos| 18+视频在线观看| 国产+日本+高潮| 欧美精品午夜一区二区三区| 日韩一级黄色录像| 五月激情婷婷综合| 成人三级视频在线观看一区二区| 久久久久久免费毛片| 非洲黑妞xxxxhd精品| 国产一区二区不卡在线看| 成人av在线资源| 偷自拍亚洲视频在线观看99| 亚洲阿v天堂无码z2018| 亚洲精品入口一区二区乱| 精品国产av一区二区三区√| 成人做爰A片免费看网站网豆传媒| 精品国产乱码一区二区三区小黄书| 韩国做aj的视频大全| 先锋+视频+国产精品| 久久国产精品久久国产精品99| 91亚洲一区二区三区视频| 亚洲欧美日韩国产一区二区在线| 在线天堂新版资源www| 国产欧美一区二区三区片| 亚洲国产精品第一区二区| 精品一区二区三人妻视频| 人妻精品一区二区在线视频| 亚洲欧美中文字幕在线net| 精品国产精品一区二区夜夜嗨| 精品香蕉久久久午夜福利| 欧美日韩亚洲精品一区| 久久精品国产99精品国产2021| 91亚洲视频在线免费观看| 久久天天躁狠狠躁夜夜96流白浆| 亚洲黄色中文字幕免费在线观看| 精品一区二区福利视频| 免费+网站+国产| 综合国产免费成人在线视频 | 91久久国产一区二区三区| 日本xxxx色视频在线播放| 亚洲精品久久久久中文第一幕| 天天干天天干天天干| 亚洲а∨天堂久久精品喷水| 在线精品亚洲一区二区动态图| 好看的中文字幕av| 高潮+国产+免费| 大战熟女丰满人妻AV| 国产热a欧美热a视频在线观看 | 麻豆国产VA免费精品高清在线| 国产在线激情小视频国产馆 | 日本精品videosse×少妇| 国产+高潮+少妇| 高清亚洲中文字幕在线观看| 好吊视频一区二区三区| 少妇熟女视频网站一区二区三区| 18禁国产麻豆精品久久久久久| 黄色小视频在线观看| 亚洲处破女av一区二区中文| 中文字幕亚洲乱码1区2区| 国产精品成人免费久久黄av片| 国产美女午夜福利视频| 国产精品久久久久久久久动漫| 九九九久久国产免费| 97人伦色伦成人免费视频| 天海翼+无码+磁力| 国精日本亚洲欧州国产中文久久| 少妇奶水亚洲一区二区观看| 国产对白叫床清晰在线播放图片| 在线视频免费观看一区| 中文在线字幕免费观看电视剧日剧| 国产成人一区二区精品九色| 影视av久久久噜噜噜噜噜三级| 懂色av一区二区三区四区五区| 久久久久久国产精品高清| gogogo高清在线观看+视频| 一区二区午夜福利在线看| 国产精品欧美精品日韩专区一乛方| www.igao.comwww.yjt| 粉嫩一区二区三区| 亚洲第一极品精品无码视频| 日本丰满人妻久久久久久| 国语对白刺激真实精品91| 免费观看成年人网站| 国产高清免费在线观看精品| 亚洲+群p+在线| 蜜桃tv一区二区三区| 久久综合九色欧美婷婷| 亚洲+欧美+视频| 国内精品人妻无码久久久影院| 波多野结衣《温泉人妻》| www欧美国产丝袜一区二区 | 美女久久久久久久久久| 北条麻妃大战黑人无码| 国产成人三级三级三级97| 在线观看黄色av| 4488CC.成人A片| 亚洲成在人线天堂网站| 欧美国产精品国产三级国产AⅤ下载 | 99久久国产综合精品女同| 成人免费区一区二区三区| 久久人人爽人人爽人人片dvd | 嫩草嫩草嫩草久久水拉丝了| 午夜永久精品视频在线看| 中文精品一卡2卡3卡4卡| 中文字幕+乱码+在线观看| 91久久久久久国产精品| www.久久综合| 中文天堂最新版资源www| 国产精品4huwww| 精品一区二区三区四区视频观看| 国产制服丝袜欧美在线观看| 国产+免费+裸体| 国产免费看又黄又粗又硬| 欧美成人手机视频| 大桥未久+无码+bt| 亚洲成a人蜜臀av在线播放| 高潮+白浆+在线观看| 亚洲国产中文一区二区99re| 91大神精品在线| 被男人亲下面到高潮视频久久| 91狠狠色综合久久久夜色撩人| 美州a亚洲一视本频v色道 | 18+在线观看视频| 欧美三级在线播放| 一本无码人妻在中文字幕| 日韩精品中文在线观看一区| 麻豆果冻传媒潘甜甜丶| 国产成人cao在线| 91精品久久久久久久久青青| 曰本a∨久久综合久久| 成人精品啪啪欧美成| 午夜在线观看网站| 国产无套粉嫩白浆内的人物介绍| 丁香啪啪中文字幕亚洲人成一区 | 日韩成人av免费在线观看| 国产99久久精品一区二区| 激情国产欧美一区二区三区| 岛国+激情+无码| 91精品视频在线| 欧美熟妇交换做爰XXXⅩ网站| 鲁大师影视在线观看高清免费| 99精品偷拍在线中文字幕| 亚洲色精品三区二区一区| 国产精品无卡毛片视频| 国产午夜福利在线观看红一片 | 日韩av在线一区二区三区 | 成人免费视频538国产网站| 中文字幕在线日韩欧美在线观看 | 成人做爰a片免费看网站找不到了 另类图片+动漫+日韩 | 亚洲欧美日韩_欧洲日韩| 欲香欲色天天综合久久| 国产精品原创av| 亚洲精品一区久久久久| 国产视频一区二区在线播放| 黄网在线免费观看| 免费人妻一区二区三区免费视频| 草草影院ccyy国产日本欧美| 巨茎与艳妇麻麻啪啪漫画| 免费在线观看黄片| 欧美XXXBBB| 亚洲AV色欲色欲WWW| 日韩精品不卡在线| 亚洲色欲久久久久综合网| 国产精品成人免费久久黄av片| 亚洲精品国产福利| 成人无码专区免费播放三区| 亚欧乱色国产精品免费九库| 亚洲国产精品suv| 亚洲精品精华液一区二区| www.亚洲最全福利视频网站| 18+免费视频下载| 好男人社区www在线视频| 黄色片网站在线播放| 亚洲国产人成自久久国产| x88AV~熟女人妻| 亚洲婷婷五月综合狠狠app| 国产午夜18久久久久久白浆| 免费在线观看中文字幕区| 美女18禁一区二区三区视频| 美女视频黄的全免费视频网站| 少妇高潮7777777丫乄| 免费看日产一区二区三区| 97色精品视频在线观看| 亚洲日韩一区二区一无码| 最新国自产拍小视频| 国产欧美亚洲麻豆天堂第一页 | 久久视频免费在线观看| 精品久久久久久久久久久久包黑料| 91精品综合久久久久久五月天| 日韩一区二区天堂在线观看| 麻豆绿帽人妻白洁AV| 欧美熟妇丰满xxxxx裸体艺术| 人妻无码少妇一区二区| 欧美国产日韩亚洲中文| 亚洲精品国产嫩草在线观看免费| 久久久久久a亚洲欧洲av冫| 亚洲a∨无码精品色午夜| 精品伊人久久久99热这里只| 国产欧美日韩一区二区国内| 国产成人三级在线观看| 亚洲+综合久久+成人av| 456视频在线观看| 熟女俱乐部五十路二区av| 亚洲第一综合网站| 伊人色综合久久天天小片| 2022年国产精品一区二区| 欧美日韩国产高清一区二区三| 无码一区二区三区视频| 亚洲一区福利视频| 女人特黄大aaaaaa大片| 91亚洲欧美中文精品按摩| 老熟妇午夜毛片一区二区三区| 国产一区二区三区在线看麻豆| 色欧美福利视频看看午夜| 中国做爰国产精品视频| 国产成人A∨在线观看不卡| 免费播放高清毛片A片色情天雨水多| 97免费视频在线观看| 亚洲s码欧洲m吗国产精品| 亚洲精品第一国产综合野| 国产精品一二三区在线观看| 九九热视频在线播放| 台湾亚洲精品一区二区tv| 热久久这里只有精品| 亚洲日韩一区二区三区| 日本久久高清免费观看| 丁香色欲久久久久久综合网| 超碰cao已满18进入离开官网| 无码国产精品一区二区免费模式| 天堂www天堂在线资源网| 日韩欧美高清在线一区二区| 久久这里只有精品久久91| 久久久久久久国产精品免费| 中文字幕亚洲乱码1区2区| 亚洲禁18久人片| 亚洲日韩av一区二区三区中文 | 日本中文字幕在线不卡视频一区| 久久大香香蕉国产免费网vrr| 久久久久久国产精品| 美足+丝袜+影音先锋| 国产+欧洲+在线观看| 吸乳18禁羞羞二区三区| 中文字幕亚洲欧美日本懂色| www.国产成人在线免费看| 亚洲伊人久久大香线蕉下载| 国产精品国产精品久久久久| 午夜精品第一区第二区第三区| 日韩丰满少妇无吗视频激情内射| 久久亚洲色一区二区三区| 青青国产香蕉视频在线观看| 欧美日韩在线视频免费播放| 日韩激情在线观看| av影片在线观看| 欧美在线人视频在线观看| 天天躁日日躁狠狠躁免费麻豆 | 黑色丝袜国产精品| 久久精品免费看一| 无码+护士+磁力链接| 337P粉嫩大胆噜噜噜55569| 国产精品一区二区三区女同| 日韩一级二级视频| 视频一区视频二区制服丝袜| 国产乱子伦精品免费女| 亚洲精品av网站在线观看| 精品久久亚洲中文不卡| 日本中文字幕+在线播放| 天天爽夜夜爽视频精品 | 欧美日韩亚洲tv不卡久久| 天天狠天天插天天透| 久久伊人色av天堂九九| 强奷漂亮少妇高潮麻豆| 精品国产综合久久久久| 亚洲国产成人福利在线视频播放| 精品国产亚洲av色噜噜| 伊人久久久久久久久| 99精品视频99| 亚洲欧洲中文日韩久久av乱码| 免费看片www.137| 国产成人精品日本亚洲麻豆| 岛国精品一区免费视频在线观看| 中文字幕大看蕉在线观看| 中文字幕+中文在线| 久久久青草青青亚洲国产免观| 久久99热这里只有精品23| 交专区videossex| 91精品久久久久久综合乱菊| 九九影院电视剧免费播放观看| 欧美激烈精交gif动态图| 免费无码又爽又刺激高潮视频看看老A| 国产伦子伦一级A片免费看刘亦菲| 亚洲欧美韩国日本在线一区二区| 中文字幕av久久激情亚洲精品| 国产免费无遮挡吃奶视频| 国产av丝袜一区二区三区| 麻豆果冻传媒精品国产苹果 | 亚洲国产精品成人久久久久| 欧美激情一区二区三级高清视频| 免费无码又爽又刺激高潮视频看看老A | 国产成人av三级在线观看 | 日产精品一二三四区国产| 中文亚洲精品字幕在线观看| 91一区二区国产精华液| 99久久精品国产综合一区 | 中文字幕+av在线| 91午夜福利欧美日韩一区二区| 精品美女视频在线观看免费 | 国产精品久久久久久久久久妇女| 成人精品av一区二区三区网站| 国产三级在线观看视频| xxx日本一区二区免费| 中文字幕国产专区欧美激情| 亚洲乱码在线卡一卡二卡新区豆瓣| 国产精品中文久久久久久99清纯| 磁力bt天堂在线www搜索| 精品一区二区三区四区视频观看| 人妻丰满熟妇av无码区app| star+433+影音先锋| 亚洲s久久久久一区二区| 久久国产亚洲高清观看| 欧美日韩黑人老熟妇中文字幕| 另类重口特殊AV无码| 免费在线观看午夜片网站| 国产精品美女乱子伦高 | 桃花岛成人在线观看| 美女网站一区在线观看免费国产| 国产老头和老太xxxx视频| 久久婷婷五月综合色国产免费观看| 午夜免费福利视频| 成人版女007毛片| 狠狠躁夜夜躁人人爽天天不卡| 偷拍国精产品久拍自产| 国产精品视频_区二区三区| 国产在线观看免费高清电视剧大全 | 国产jjizz一区二区三区老人| 超高清欧美videossexopor| 欧美日韩精品亚洲色图视频免费 | 国产精品中文字幕有码在线观看| 亚洲国产精品成人久久久久| 亚洲精品国产精华液| 9l国产精品久久久尤物av| 野花成人免费视频| 免费+国产+ktv| 国产精品自产拍在线观看中文| 人妻ⅰapanfreehd人妻| 伊人色综合久久天天五月婷| 欧美亚洲另类日韩在线网页| 国产免费人成视频在线观看| 毛多水多丰满女人A片| 久久精品国产自在天天线| 最近高清日本免费| 免费+精品+国产网站| 亚洲三级精品一区二区三区| 日日大香人伊一本线久| 久久国产精品午夜福利看片| 精品国产不卡一区二区三区| 《喂奶人妻厨房HD》| 在线人人车操人人看视频| 国产伦精一品二品三品app| 国产精品亚洲欧美大片在线看| 国产日韩精品一道在线观看| 91中文字幕在线视频| 91av天堂在线观看视频| 亚洲人成人无码www| 日韩在线欧美在线| 韩国巜干柴烈火〉床戏| 国产亚洲精品久777777| 亚洲国产福利成人一区| 免费+五码+国产| 国产精品美女无遮挡在线观看| 日本很黄色的网站一区免费观看| 亚洲国产精品热久久| 国产成人精品一区二三区| 欧美日韩中文国产| 久久露脸国语精品国产91 | 国产一区二区三区在线视頻| 国产高清吃奶成免费视频网站| www国产精品视频看看| 亚洲手机在线人成网站| 亚洲第一成年免费网站| 国产微拍精品一区| 婷婷五月开心亚洲中文字幕| 日韩av无码久久一区二区| 色综合色天天久久婷婷基地| 国产丝袜在线精品丝袜不卡| 国产中文字幕免费在线观看 | 色欲AV无码一区二区三区| 国产精品+亚洲+欧美| 欧美+日韩+中文| 欧美日韩中文麻豆| 久久精品免费国产大片| 尤物亚洲国产亚综合在线区 | 亚洲精品久久久久久久久av无码 | 成人精品视频中文字幕版| 2021av在线无码最新| 免费+精品+国产| 亚洲视频在线免费观看一区二区 | 狼伊人一级免费毛片| 久久婷婷五月综合色丁香花 | 婷婷激情偷拍在线| 日韩福利片在线观看| 国产成人精品免费视频大全五级| 免费看的av网站| 亚洲日本一区不卡在线观看| 国产伦子伦对白在线播放观看 | 短裙公车被强好爽H吃奶视频| 中文字幕高清一区| 99热成人精品热久久6| 国产精品一区二区久久精品| 免费ā片在线观看| 人妻+日本+调教| 国产亚洲精品久久久久久床戏| 日韩精品无码免费专区午夜不卡| 亚洲伊人久久大香线蕉下载| 亚洲色中文字幕无码av| 日本一卡二卡三卡在线观看| 韩国精品久久久久久无码| 欧美XXXBBB| 亚洲欲色欲色xxxxx在线| gogogo免费完整国语| 久久老熟妇精品免费观看| 国产精品沙发午睡系列| 爽爽爽爽成年网站在线观看| 国产三级在线免费观看| av天堂最近中文在线免费观看| 伊人久久大香线蕉综合bd高清 | 久久婷婷人人澡人人喊人人爽| 婷婷综合久久一区二区三区武松 | 国产成人免费?在线播放| 黑人与中国少妇xxxx视频在线| 一区二区三区日韩欧美| 国产成人精品白浆免费视频试看 | 日韩国产欧美综合| 中文字幕+av在线| 免费在线观看一区| 欧美成人+www+一区二区| 国产精品美女www爽爽爽爽| 日韩18中文字幕欧美在线 | 青青草无码伊人久久| 多P无码视频网页| 国产Av午夜精品一区二区三区 | 99re在线视频这里只有精品| 精品国产亚洲一区| 97在线视频观看| 好爽又高潮了毛片| 粉嫩小泬无遮挡BBBBB图片| 国内精品久久久久影院薰衣草| 日本一二三不卡精品视频免费| 日韩精品中文在线一区二区| 丰满人妻被黑人连续中出| 日韩欧美成人精品一区二区三区| 99久久久久免费精品国产| 国语对白刺激精彩久久精品| 在线免费播放av| 丁香花在线影院观看在线播放| 又爽又黄无遮挡高潮视频网站| 最近在线更新8中文字幕免费| 日本+熟女+磁力链接| 人人妻人人添人人爽欧美一区| 在情趣店上班被爆cao翻了| 国产免费的又黄又爽又色| а√8天堂资源在线官网| 欧美久久久久久久久久久久久久| 在线观看精品日中文字幕| 97caoporn国产免费人人| 久久久噜噜噜久久久精品| 国产精品成人精品久久久| 国产一区二区三区撒尿在线| 国产+日本+在线观看| 亚州国产av一区二区三区伊在| 亚洲欧美日本在线观看视频| 亚洲国产精品va在线观看香蕉 | 亚洲国产精品成人综合色区 | 国产成人av一区二区三区在线观看 | 日韩Aⅴ黄日韩a影片| 欧洲精品在线播放| 精品久久久久久久久免费视频| 免费午夜福利不卡片在线播放 | 免费看国产一级特黄aa友片| 亚洲va欧美va天堂v国产综合| 男人天堂视频在线观看| 重囗味sM群虐一区二区| 久久精品国产只有精品2020| 日韩精品国产一区在线久草| 国产+在线+观看| 日本道免费精品一区二区| 亚洲国产精品第一区二区| 亚洲日韩中文字幕在线播放| 无套内射视频囯产| 青柠影院在线观看高清电视剧荣耀| 久久国产福利播放| 西西444WWW无码视频软件功能介绍 | 国产+欧美+激情| 无遮挡做爰激吻国产999| 热久久这里只有精品18| 国产精品欧美精品日韩专区一乛方 | 66国产在线一区二区三区| 日韩精品一区二区在线观看网址| 伊大人香伊大人香蕉在线视频999| 夜夜躁狠狠躁日日躁2022| 国产精品久久久久久久一级| 711公侵犯美丽人妻| 久久精品国产萌白酱一区二区| 玩弄美艳馊子高潮无码| 色欲麻豆国产福利精品| 久久受www免费人成| 亚洲欧美一区二区三区四区五区 | 久久久久久老熟女国产999| 波多野结衣无码一区| 亚洲精品入口一区二区乱| 欧美激情精品久久| 色欲AV伊人久久大香线蕉影院| 精品欧美一区二区精品久久| 尹人久久久香蕉精品| 一区二区福利视频| 粗暴蹂躏av一区二区| 国产精品毛片在线完整版| 窝窝人体色WWW聚色窝欲女吧| 色偷偷偷久久伊人大杳蕉| 亚洲欧美日韩_欧洲日韩| 国产亚洲午夜精品一区二区久久| 亚洲最大一级视频| 国产精品av一区| 无码人妻精品一区二区三区9厂| 久久精品国产一级特黄片| www国产+欧美| 成人国产热播资源| 中字幕视频在线永久在线观看免费| 成人欧美一区二区国产精品| 国产真人真事毛片视频| 亚洲视频精品久久久| 高清无码不用播放器av| 国产激情内射在线影院| 青青国产香蕉视频在线观看 | 丰满双乳峰白嫩少妇成人网站 | 久久久99精品成人片中文字幕| 亚洲一区久久精品东京热| 五十路の完熟豊満| 精品久久久久久中文字| 国产综合精品在线| 日韩欧美在线不卡| 丰满蕾丝乳罩少妇呻吟91| 熟妇人妻系列AV无码一区二区| 美脚恋足癖一区二区三区| 亚洲中文字幕乱码av波多ji| 成人在线免费高清视频| 国产免费无遮挡吸乳视频app| 日韩精品人妻系列无码专区| 欧美福利在线视频| 久久av+高潮+搞| 葵司+下载+影音先锋| 成人亚洲国产精品一区不卡| 日本一道一区二区视频| 三上悠亚在线日韩精品| 欧美国产日韩在线观看视频一区 | 桃色视频高清亚洲一区二区在线 | 免费+精品+国产| 日韩精品视频免费在线观看| 国产自偷在线拍精品热| 柳州莫菁菁av一区| 美女一区二区三区网av| 中文字幕欧美成人免费| 国产精品二区高清在线| 欧美一区二区三区在线| 国产免费国语一级特黄aa大片| 色婷婷一区二区三区av免费看| 午夜爽爽爽男女免费观看一区二区| 亚洲日韩一区二区一无码| 99riav欧美丰满少妇视频| 91日韩精品久久久久身材苗条| 久久精品国产亚洲av热一区| 日韩欧美高清在线一区二区| 亚洲天堂第一在线视频看看| 天堂aⅴ无码一区二区三区| 亚洲一区二区三区四| 国产亚洲又爽ⅴa在线天堂| 色婷婷婷在线网站| 亚洲国产精品综合久久网各| 婷婷成人综合一区二区三区| 成人又黄又爽又色的网站| 午夜丰满少妇高清毛片1000部| 欧美精品一区二区三区蜜桃臀 | 欧美国产成人免费观看| 中出あ人妻熟女中文字幕| 18+视频在线看| 蜜臀精品国产高清在线观看| 久久婷婷五月综合成人d啪 | 精品亚洲国产成人av制服丝袜| 国产精品久久久久成人| 亚洲精品久久久久中文字幕| 肉丝美足丝袜一区二区三区四| 在线观看一区二区国产欧美| 一本大道久久香蕉成人网| 亚洲欧美日韩人成在线播放| 久久精品青草社区| 天堂网www中文在线| 亚洲高清av在线| 搜查官+丝袜+影音先锋| 中文字幕熟女人妻偷伦| 制服师生中文字幕一区二区| 精品欧美日韩中文字幕在线观看 | 亚洲欧美一级久久精品国产特黄 | 国产一区高清视频在线观看| 国产一级中文字幕在线观看| 好男人资源在线www免费 | 午夜成人精品福利网站在线观看| 精品久久久噜噜噜久久| 翘臀后进少妇大白嫩屁股视频 | 亚洲无码高清一区二区三区视频| 国产+高潮+少妇| 国产成人+综合亚洲+天堂 | 国外av片免费看一区二区三区| 久久久亚洲国产美女国产盗摄| 成av免费大片黄在线观看| 亚洲一区福利视频| 日韩三级国产三级| av中文字幕+潮喷+在线观看| 亚洲老熟女乱综合一区二区| 久久网美女黄色视频网站| 亚洲午夜影院在线观看视频| 午夜福利国产精品久久超碰最新 | 国产精品三级av三级av三级| 国产99久久久久久免费看| 午夜免费无码福利视频麻豆| 中文有无人妻vs无码人妻激烈| 国产精品自在拍首页视频8| 狠狠色婷婷久久综合频道日韩| 免费人成视频x8x8日本| 老a影视精品无码视频| 国产又黄又猛又粗又爽的久久久 | 久久精品亚洲毛片美女极品视频| 日本在线观看免费| 日本a视频在线观看| 成年免费视频黄网站在线观看| 成人精品av一区二区三区网站| 亚洲老熟女乱综合一区二区| 成人做爰A片免费看网站网豆传媒| 国产97在线观看| 七仙女大乳全黄裸体| 国产一区日韩二区欧美三区| 久久伊人精品视频| jizz国产免费| 亚洲免费视频在线观看| 波多野结衣一区二区三区av高清 | 色噜噜日韩精品欧美一区二区| 在线欧美精品一区二区三区| 精品精品国产自在97香蕉| 欧美热在线视频精品999| 精品区一区二区三区| 99精品视频在线观看婷婷| 久久免费精品国自产拍网站| 91精品久久久蜜桃网站| 亚洲成人在线播放| 欧美在线播放一区二区欧美馆 | 日韩欧美国产一区呦呦91| 国产+高潮+刺激| 丁香花影院在线观看免费播放电视剧| 久久久久久久久久99精品| 97久久超碰精品视觉盛宴| 免费看成人aa片无码视频| 91在线公开视频| 国产欧美精品一区| 亚洲熟妇自拍无码区| 动漫无遮挡羞视频在线观看| 国产精品一区二区久久乐夜夜嗨| 777奇米四色成人影视色区| 国产片在线天堂av| 丁香五月激情综合亚洲| 中文亚洲精品字幕在线观看| 国产成人亚洲精品青草| 国产高清乱理伦片中文小说| 最近最新中文字幕大全直播| 欧美一片毛国产在线视频| 秋霞无码av一区二区三区| 久久午夜国产精品www忘忧草| 四川乱子伦农村露脸| 国产精品岛国久久久久久久久红粉 | a天堂视频在线观看| 国产+高潮+护士| 久久精品日产第一区二区三区在哪里| 国内偷自第一区二区三区| 亚洲欧美日韩国产一区二| 欧美视频免费观看午夜在线| 亚洲国产日本韩国欧美mv| 欧美大片免费播放器| 四lll少妇BBBB槡BBBB| 永久综合精品网站在线免费观看| 日本一区二区视频| 成人+动漫+日韩毛片| 狠狠综合久久久久尤物| 久久天堂无码av网站| 久久久国产丝袜美女| 无码人妻一区二区三区免费视频 | 在线看片免费人成视频久网| 国产精品久久久久久久天堂| 国产亚洲制服丝袜一区二区| 精品成人乱色一区二区| 中日精品无码一本二本三本| 免费av资源网站在线观看| 日本精品婷婷久久爽一下| 尹人久久久香蕉精品| 亚洲另类国产精品中文字幕| 久久国产午夜精品理论片推荐| 无码+磁力+日本| 91精品福利在线观看| 在线最新av免费费观看| 国语对白刺激精彩久久精品 | 麻豆日产精品卡2卡3卡4卡5卡 | 日本xxxx色视频在线播放| 欧美视频中文字幕| 无码AV最新无码AV专区| 国产精品99一区二区三区| 欧美+日本+国产| 伊人精品成人久久综合| 亚洲乱码国产乱码精品精不卡| 国产欧美福利v888av| 精品久久久久久无码中文野结衣| 干离异富婆的骚B| 欧美黄色免费视频| 51成人免费影院| 日韩精品视频免费看| 在线视频在线观看国产一区| 中国特级黄色毛片| 中文免费高清在线观看电视剧| 在线播放av网站| 日韩人妻无码免费视频一区二区三区| 午夜黄色永久视频| 国产热a欧美热a视频在线观看| 真实国产精品视频400部| 成人看片黄a免费看视频| 亚洲一区二区三区乱码av麻逗| 日本国产一区二区三区| 色678黄网全部免费| 亚洲丝袜制服在线观看视频| 国产综合色在线精品| 亚洲+国产+视频在线| 欧美三级在线观看视频| 国色一卡2卡二卡4卡乱码| 黄色av一区二区三区四区| 亚洲女同精品一区二区| 成人黄色在线观看| 天天躁日日躁狠躁欧美| 日本在线视频网站+www+色| 伊人久久大香线蕉综合色狠狠| 欧美+日韩精品+另类图片| 麻花传媒剧国产mv高清播放 | 中文字幕在线视频第一区二区| 色婷婷六月亚洲婷婷丁香| 被男人亲下面到高潮视频久久| 国产精品亚洲综合久久系列| 欧美精品国产制服丝袜第一页 | videosxxxx老女人| 国产在线看片免费观看| 大家可以在这里国产一级淫片a视频免费观看 | 99久久国产综合精品五月天喷水 | 床戏(巨肉高h)双男| 日本一道一区二区视频| 成人+高潮+国产| 亚洲精品国产高清一线久久| 欧美成妇人吹潮在线播放+下载| 国产激情无套内精对白视频| 91久久精品无码专区嫖妓| 最新av偷拍av偷窥av网站 | 免费香蕉成视频人网站| 精品人妻码一区二区三区| 精品国产一区二区三区四区色| 免费看国产一级特黄aa友片 | 欧美成妇人吹潮在线播放+下载 | 国产日韩欧美亚欧在线| 丁香婷婷六月综合交清| 欧美亚洲另类日韩在线网页| 在线视频国产网址你懂的| 国产欧美日韩另类精彩视频 | 精品国产三级大全在线观看| 琪琪在线影院电视剧免费| 视频久re精品在线观看| 成人精品日韩一区二区蜜臀| 91大神精品在线| 中文字幕在线视频不卡| 国产va在线观看| 人妻少妇中文字幕乱码| 成人福利综合视频免费视频| 在线观看jizz| 欧美日韩一级片在线免费观看| 2020久久精品国产免费| 一本大道久久精品懂色aⅴ| 丰满大乳奶做爰ⅩXX视频| 四川少妇大战4黑人| 久久精品国产亚洲av水果派| 亚洲精品第一国产综合野 | 日日噜噜夜夜狠狠久久av小说| 疯狂欧美大伦交乱| 亚洲处破女av一区二区中文| 欧美一二三区在线观看视频| 国产亲子乱a片免费视频| 成人在线观看一区| 久久精品国产亚洲av高清观看| 巨大荫蒂视频欧美另类大| 夜夜爽夜夜叫夜夜高潮漏水 | 日韩精品网站在线观看| 91中文字幕在线| 爆黑正能量料最新| 中日韩无砖码一线二线| 国产精品永久免费av观看| 9299yy看片婬黄大片软件| av中文天堂在线| 免费国产精品黄色一区二区 | 激情综合婷婷色五月蜜桃 | 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解| 国产午夜精品18久久蜜臀董小宛| 又黄又爽全无遮挡的免费视频| 日本www在线观看| 日日摸夜夜添夜夜添国产精品| 在线观看视频亚洲免费视频| 精品黑人一区二区三区| 国产精品久久久久久a..| 久久天天躁狠狠躁夜夜躁综合| 国产精品欧美激情在线播放| 久久久麻豆精品一区二区| 成人资源在线观看| 国产做受高潮漫动| 在线观看国产小视频网站| 99热门精品一区二区三区无码| 18+成人免费视频| 多人玩弄波多野结衣| 久久久久人妻一区精品果冻| 亚洲美女视频之国产精品| 久久亚洲国产男女日穴精选| 成人一区二区三区久久精品嫩草| 日本a视频在线观看| av久久悠悠天堂影音网址| 4虎影院永久地址WWW| 亚洲mv高清砖码区2022伊甸园 | 成人午夜在线播放| 国产视频又黄又粗又爽又猛| 国产激情一区二区三区小说| 亚洲欧洲无码一区二区三区| 丁香啪啪综合成人亚洲小说| 欧美一级特黄AAAAA片大水| 色综合天天综合欧美综合| 国产精品久久免费观看spa| 欧美超猛烈一区二区三区| 国产+成人+欧美| 自拍视频国产三级| 国产成人久久av免费高清密臂| 一区二区激情av| 亚洲女同精品一区二区| 粉嫩av一区二区在线播放免费| 国产在线精品一区二区不卡 | 日韩精品人妻系列无码专区| 韩国一级精品毛片| 天堂aⅴ无码一区二区三区 | 好看的中文字幕av| 妺妺窝人体色www在线小说| 亚洲国产成人精品女人久久| 一级美国无码高清| 强奷漂亮少妇高潮麻豆| 久久精品免费网站| 欧美成人看片一区二区| 亚洲一区二区三区四 | 搡老岳熟女国产熟妇| 成人国产精品免费观看| 成人在线视频网址| 欧美三级黄色大片| 欧美成人福利视频| 99久久久精品免费国产| 国内精品麻豆美女在线播放视频| 亲密+磁力链接+下载| 国产黄色福利网站| 久久久久无码精品亚洲日韩| 精品一区二区三区影院在线午夜| 久久亚洲精品国产精品紫薇| brazzers精品成人一区| 国产精品乱码久久久久久软件| 亚洲精品无amm毛片| 污18禁污色黄网站免费观看 | 国产精品久久久久久三级 | 亚洲Av永久无码天堂影院黑人| 国产jjizz一区二区三区老人| 亚洲综合国产精品一区| 337P粉嫩大胆噜噜噜55569| 精品国产亚洲一区| 亚洲一区在线免费| 欧美一级视频在线观看三级 | 少妇嫩搡BBBB搡BBBB| 精品伊人久久久99热这里只| 国产高清a视频在线观看| 国外av片免费看一区二区三区| 果冻天美麻豆一区二区国产| 精品国产乱子伦一区二区三区最新章节 | 青青草草青青草久久草| 在线观看av网站永久免费观看| 辽宁熟女高潮狂叫视频| 粉嫩一区二区三区四区公司1| 国产精品女同一区二夜夜夜嗨| 日韩中文字幕国产| 亚洲午夜福利精品无码不卡| 亚洲精品日韩中文字幕久久久| 日本极品丰满ⅹxxxhd| 黄页免费观看一区二区三区| 蜜桃视频成人A片免费观看少妃| 337p日本欧洲亚洲大胆| 欲色影视天天一区二区三区色香欲 | 国产探花视频在线观看网址| 麻豆黑色丝袜jk制服福利网站| 欧美一级淫片007| 国产伦精品一区二区三区综合网| 新欧美ssss亚洲综合| 国产欧美大片一区二区三区| 精品+国产+传媒| 亚洲丝袜一区二区| 99精品国产一区| 亚洲欧洲无码一区二区三区| 国产初高中生粉嫩无套第一次| 中文字幕一区二区国产| 苍井空一级婬片A片AAA片动漫| 欧美+国产+日韩在线| 在线观看精品视频| 成人年人免费看xxxxxxx| 国产成人精品一区二区| 亚洲av乱码国产精品麻豆| 琪琪国产一区在线观看视频 | 正在播放+日韩+无码| 久久视频这里只精品| 丰满人妻熟妇乱又伦精品劲| 精品国产一区二区三区四区色| 国产精品熟妇一区二区三区四区| 免费国产精品一区二区三| 女同一区二区三区在线观看| 中文字幕+居然+磁力| 黑外教弄人妻波多野结衣| 无码+羽田桃子+番号| 葵司+下载+影音先锋| 国产目拍亚洲精品一区二区| 亚洲a∨精品一区二区三区| 亚洲成a人v在线蜜臀| 亚洲人成未满十八禁网站| jizz久久精品永久免费| 500部大龄熟乱4K视频| 国产精品成人免费视频一区二区 | 国产伦精品一品二品三品的更新时间| 亚洲av成人一区国产精品一| 久久久久夜色精品国产av| 91丝袜呻吟高潮美腿白嫩综艺| 4k岛国精品午夜高清在线观看| 天天澡天天狠天天天做| 99久久久精品免费国产| 巨爆乳肉感一区二区三区 | 亚洲桃色在线播放国产精品| 欧美一区午夜精品久久福利| 欧美日韩一级片在线免费观看| 好爽好湿好硬好大免费视频| 亚洲欧美国产国产综合一区| 又大又硬又爽免费视频| 亚洲最大成人综合一区二区| 国产精成人品日日拍夜夜| 国产在线观看免费人成视频| 日本最新免费二区| 无套内射波多野结衣| 国产精品三级一区二区| 国内大量揄拍人妻精品视频 | 久久精品亚洲精品国产欧美| 肉丝美足丝袜一区二区三区四| 亚洲午夜精品一区二区国产 | 东北妇女xx做爰视频| 亚洲欧美精品中文一区二区三| 久久亚洲成人x视频| 国产一区二区在线观看视频免费| 亚洲一级福利专区成人在线视频 | 亚洲精品成人av| 亚洲天天做夜夜做天天欢人人| 在线最新av免费费观看| 尤物亚洲国产亚综合在线区| 国产成人在线精品| 免费黄色网址在线观看| 国产成人精品18禁三区| 国产免费观看高清电视剧在线观看 | 内射老太太b里面| 黄页网站大全男女免费观看| 99国产精品18久久久久久| 亚洲精品国产精品国自产中出| 在线观看+成人免费视频+不卡 | 精品国产精品一区二区夜夜嗨 | 欧美+国产+精品| 亚洲精品久久久久久久久毛片直播| 亚洲AV成人片无码| 大地资源二中文在线观看下载| 欧美巨茎A片在线观看| 国产a∨国片精品白丝美女视频| 亚洲欧美日韩一区二区三区在线| 亚洲国产高清在线一区二区三区| 亚洲精品久久久久久久久av无码| 国产精品自在拍首页视频8| 农村末发育av片一区二区| 欧美亚洲日本一区| 国产+麻豆+免费| 成人午夜精品一区二区张津瑜| 中文娱乐网2222官网入口| 天堂а√在线中文在线新版| 久久96热在精品国产三级| 辜莞允+无码+视频下载| 极品av麻豆国产在线观看| 国产女人18毛片水真多18| 18+在线看视频| 成人一区在线观看| 真人床震高潮全部视频免费| 九九精品在线观看| brazzers精品成人一区| 三上悠亚在线日韩精品| 91久久婷婷国产一区二区| 国产主播一区二区不卡在线观看| AV剧情麻豆映画国产在线观看| 综合色区无码一区| 亚洲欧美一级久久精品国产特黄| 一级黄色免费大片| 精品无码av一区二区三区不卡| 亚洲成a人一区二区三区| 国产精品久久久久久三级| 亚洲乱码国产乱码精品精男男| 国产色综合天天综合网| 成人无码精品1区2区3区免费看| 国产精品毛片日韩毛片视频| 成人av片手机在线播放| 欧美在线人视频在线观看| 日韩精品中文在线一区二区| 久久精品国产亚洲av麻豆尤物| 久久亚洲精品人成综合网| 91传媒在线播放| awww在线天堂bd资源在线| 国产精品jk白丝蜜臀av小说| 又粗又黑又大的吊av| 久久这里只有是精品23| 99热99这里只有精品| 国产精品久久一区二区三区动| 授乳喂奶av中文在线| 丰满人妻熟妇乱又仑精品| 国内精品久久久久影视| 国内揄拍高清国内精品对白 | 日韩一区免费视频| 国产精成a品人v在线播放| 亚洲2017天堂色无码| 91精品国产色综合久久不卡98| 欧美一区二区三区人妖视频| 小芳~婬荡~嗯啊好深视频| 午夜爽爽爽男女免费观看一区二区| 国产在线精品一区二区在线看| 中文字幕日产乱码一区| 日本真人做爰a片| 欧美日韩一区二区三区| 精品不卡一区中文字幕| 漫蛙漫画(网页入口) | 国产高清一区二区三区四区 | 久久精品国产精品亚洲下载| xxx+成人精品+视频在线| 少妇伦子伦精品无吗在线观看| 在线亚洲专区高清中文字幕| 天天澡天天狠天天天做| 日韩三级伦理片色呦呦中文字幕 | 国产在线精品一区二区不卡| 好男人在线影院官网www| 亚洲欧美日韩一本无线码专区 | 亚洲午夜福利精品无码不卡| 亚洲永久免费视频| 巨大乳の揉んで乳榨り男女男| BBBBB女女女女BBBB| 777777农村二级毛片| 中文字幕亚洲欧美日本懂色| 青青草免费在线视频| 亚洲国产中文一区二区99re| 久久亚洲精品小早川怜子| 2022av视频| 动漫无遮挡羞视频在线观看| 日本黄色免费视频| 蜜桃视频在线观看免费网址入口| 深夜福利小视频在线观看| 亚洲a∨精品一区二区三区| 欧洲人妻丰满av无码久久不卡| xxxx日本免费| 国产高清在线不卡| 天堂在线视频免费| 精品久久久久久无码中文字幕漫画 | 亚洲黄色免费观看| 国产精欧美一区二区三区久久| 在线+成人+日韩毛片| 国产成人午夜精华液| 日本精品久久久久久| 亚洲色大成网站www尤物| 亚洲国产日本韩国欧美mv| 亚洲综合区图片小说区| 成人精品一区二区三区网站| 久久精品亚洲精品国产色婷| 午夜福利国产精品久久| 精品麻豆AV影院| 国产精品视频_区二区三区| 国产在线看片免费观看| 精品人妻少妇一区二区三区不卡| 久久久久人妻一区二区三区VR| 欧美综合婷婷欧美综合五月| 免费全部高h视频无码软件| 国产高清精品软件| 日韩精品免费一区二区三区竹菊| 午夜在线观看网站| 欧美专区日韩视频人妻| 白丝在线看片av| 污欧美视频在线免费观看| 777奇米四色成人影视色区| 亚洲国产精品+嫩草影院+久久| 久在线观看福利视频| 午夜在线视频一区二区区别| 久久99国产精品久久99果冻传媒新版本 | 国产+欧美+日本在线观看| 国产免费爽爽视频+在线观看| 明星乱淫免费视频欧美| 91精品国产综合久久婷婷香| 日本在线a一区视频| 亚洲a∨无码精品色午夜| 国产成人免费高清在线观看| 欧美亚洲日本国产爽快片| 亚洲av乱码国产精品麻豆| 免费+高清+在线观看| 蜜桃视频一区二区三区在线观看| 娇妻被黑人伦轩1~14| 97午夜理论片在线影院| 亚洲国产精品不卡av在线| 18+漫画美女+日韩毛片| 羞羞漫画+在线播放| 美女黄频视频免费大全久久 | 国产精品视频六区| 免费+精品+视频| 久久精品亚洲精品无码金尊| 张津瑜国内精品www在线 | 狠狠躁天天躁日日躁欧美| 国产亲伦免费视频播放| 无码人妻一区二区三区免费手机 | 中文资源在线天堂库8| 亚洲AV午夜精品无码专区| 欧美精品三级黄片| 国产内射一区二区xxx| 国产午夜在线播放| 成人+动漫+日韩毛片| 野花影院在线观看视频| 欧美一区二区三区亚洲国产精品 | 亚洲黄色免费观看| 久久ee热这里只有精品| 在线观看视频中文字幕| 国产在线观看欧美二区三区 | 国产+免费+福利| 成人含羞草一区二区三区| 97久久久精品综合88久久| 久久精品免费成人| 伊人色综合久久天天小片| 国产清纯美女高潮出白浆+色| 国产精品久久久福利| 色妞www精品视频一级| 欧美精品一区二区三区一线天视频| 亚洲三级精品一区二区三区| 欧美亚洲日本国产爽快片| 亚洲永久精品ww47| 久久精品国产亚洲精品166m| 国产精品久久网站| 国内老熟妇乱子伦视频| 日韩在线观看免费全集电视剧网站| 国产精品人人爽人人做av片 | 末成年毛片在线播放| 欧洲无线码免费一区| 亚洲精品国产av日韩精品| 97视频+国产日韩欧美| 夜夜爽8888免费视频| 日本黄色视频一区二区免费| 国产美女午夜福利视频| 日韩18中文字幕欧美在线| 亚洲男人天堂综合在线视频| 伦利理午夜理论片| 内射少妇一区27p| 日本道免费精品一区二区| 久久99国产精品久久99软件| 琪琪777午夜理论片在线观看播放| 精品少妇一区二区三区在线观看| 破了女学生小嫩苞A片| 亚洲综合久久一本伊一区| 国产精品二区视频| 国产精品日韩欧美亚洲另类 | 国产一级内射91小草| 久久无码av中文出轨人妻| 少妇爆乳无码专区| 久热这里只有精品99在线观看| www欧美视频在线免费观看| 亚洲精品一区二区不卡| 亚洲+日产+欧美| 久久久一区二区三区国产精品| 天天综合在线观看| 国产麻花豆剧传媒精品免费| 99在线成人精品视频| 国产麻豆激情一区二区三区在线| 欧美日本一道本一区二区中文| 最新国产激情视频在线观看 | av中文字幕在线免费观看| 亚洲视频一区高清在线观看| 欧美高清在线免费观看视频| 国产成人免费永久播放视频平台| 奇米第四声中文字幕| 日本黄色视频一区二区免费 | 成人+免费+欧美| 国产黄色一区二区| 91久久精品国产| 色欲色香天天天综合网站| 初撮り人妻ド五十路妻| 国产的av在线免费观看| 无码区日韩特区永久免费系列| 国产精品污污在线观看入口| 亚洲va在线va天堂xx| 欧美午夜精品久久久久久白云| 亚洲精品视频一二三区| 亚洲成人AV在线| 夜夜爽夜夜叫夜夜高潮漏水| 日韩在线欧美在线| 亚洲天堂一二区免费播放 | 中文在线高清字幕电视剧大全| 日本黄色激情视频| 日韩精品一区二区在线观看网址| 色婷婷一区二区三区av免费看 | 婷婷久久精品国产色蜜蜜麻豆| 久久精品这里热有精品| 国产+精品+空姐| av片在线观看免费| 2014av天堂无码一区| 国产女主播尤物视频在线观看 | 国产+日本+另类| 欧美国产日韩在线观看视频一区 | 亚洲+少妇+专区| 天堂www天堂在线资源网| 日本一区二区三区四区在线| 国产裸体舞一区二区三区| 国产伦理五月av一区二区| 91麻豆国产精品91久久久久| 激情影院免费视频试看| 精品欧美一区二区三区久久久| 欧美日韩精品成人网视频| 国产成人免费av片久久| 色噜噜狠狠一区二| 亚洲不卡av一区二区三区 | 久久久精品午夜国产免费| 野外少妇被弄到喷水在线观看| 香蕉视频+app| 国产欧美一区二区精品久久久| 人妻熟妇女的欲乱系列| 天天躁日日躁aaaxxⅹ| 国产午夜福利100集发布| 亚洲欧美在线中文字幕不卡| 《交换3》金智媛演技评价| 亚洲一区二区经典在线播放| 疯狂做爰xxxⅹ高潮潮喷后感染| 精品少妇一区二区三区在线观看 | 天天摸夜夜添狠狠添高潮出水 | 狠狠躁夜夜躁人人爽天天天天97| 超碰97国产精品人人cao| 狠狠色综合Tⅴ久久久久久| 美利坚合众国av| 91人人妻人人爽在线视频| 玖玖热麻豆国产精品图片| 国产+传媒+国产av| 人人妻人人爽人人澡人人| 中文字幕+乱码+中文字幕在线| 国产九九久久99精品影院| 国产又大又猛又粗视频在线观看 | 亚洲国产日韩视频观看| 在线视频免费观看一区| 成人免费在线观看h视频| 99久久精品费精品国产| 国产成人啪精品午夜网站a片免费| 2021最新国产精品网站| 国产在线不卡精品网站| 黑人大鷄巴video大杂交| 亚洲午夜免费福利av| 在线中文字幕视频| 真实国产乱子伦一区二区三区| 亚洲爆乳成av人在线蜜芽| 最近免费日韩在线视频观看| 国产免费一级毛卡片AAAAAA级| 亚洲国产日韩成人a在线欧美| 浙江妇搡BBBB搡BBBB| 成人看片黄a免费看视频| 丰满人妻熟妇乱又仑精品| 欧洲av成本人在线观看免费 | 制服丝袜诱惑一区二区三区| 色阁精品香蕉一区二区| 欧美日韩国产高跟丝袜后入| 亚洲乱码国产乱码精品精乡村| 国产av亚洲第一女人av| 一本大道在线一本久道视频| 免费看无码网站成人A片| 中文字幕日逼网站| 黄色成人av网站| 欧美一区二区日韩| 少妇一级淫免费放| 国产婷婷一区二区三区久久| 日韩在线中文字幕| 欧美亚洲国产手机在线观看| 亚洲中国精品黄色av一区| www.4虎影院| 国产福利视频一区二区三区| 成人免费无码大片a毛片18| 一区二区福利视频| gav成人网免费免播放器播放| 国产精品亚洲欧美中文字幕| 欧洲无线码免费一区| 衣服被扒开强摸双乳18禁网站| 99久久久久免费精品国产 | 日日躁夜夜摸月月添添添| 国产又粗又猛又爽又视频| 99国产精品片久久久久久 | 婷婷俺也去俺也去官网| 97视频在线观看免费| 精品成在人线av无码免费| 福利一区二区在线视频网| 免费午夜无码18禁无码影院| 国产色综合天天综合网| 亚洲天堂av在线免费观看| 水菜丽+sm+磁力链接| 亚洲欧美制服另类国产二区| 精品噜噜噜噜久久久久久久久| 人人超人人超碰超国产97超碰| 日韩av高清在线观看| 中文字幕+欧美+日韩| 国产一级片免费观看| 亚洲一卡二新区乱码绿踪林| 成人精品综合免费视频| 国产+日韩+在线高清| 日本少妇又色又爽又高潮看你| 久久www免费人成人片| 成人国产免费视频| 正在播放:良家人妻翘起屁股狂插内射| 久久97超碰国产精品超碰| 国产精品久久久一区| 97人妻成年人视频公开| 国产+r级+磁力链接| 青青草免费在线视频| 国产精品尤物铁牛tv| 国产黄片av一区二区三区四区| 亚洲国产日韩欧美在线播放| 国产免费一级淫片a级中文| 骚贷大ji巴cao死你| 欧美激情中文字幕综合八区 | 美女很骚的视频网站国产| 中文字幕免费观看视频人妻一区| 国产又粗又猛又黄的免费视频| 亚洲日韩久久综合中文字幕 | 国产91勾搭技师精品| 免费看又色又爽又黄的国产| 日本欧美一区视频在线观看| 亚洲国产中文字幕| 欧美日韩国产三级| 青青草无码精品伊人久久蜜臀| 少妇下面好紧好多水播放| 久久男人高潮av女人天堂| 黄色免费网站视频| 思思青青人人草热视频 | 人人躁日日躁狠狠躁av| 日韩欧美一区二区在线| 丰满大乳班主任趴下让我玩视频| 手机无码人妻一区二区三区免费 | 日本不卡在线播放| 亚洲欧美日本另类在线免费观看| 特黄aaa片在线观看| 日韩精品视频主播在线播放 | 茄子视频ios在线观看| 91亚洲国产一区二区三区欧美| 午夜看片在线观看| 日韩欧美一区二区三| 99久久有精品国产婷婷外女 | 免费毛片在线看片免费丝瓜视频| 米奇影视盒77777777777| 亚洲精品国产精品色诱一区 | 色丁狠狠桃花久久综合网| 欧美精品v国产精品v曰韩品| 日本五十肥熟交尾| 亚洲Av永久无码精品尤物| 琪琪777午夜理论片在线观看播放| 日本国产亚洲一区在线观看视频| 亚洲欧美在线一区中文字幕| 国产乱码一区二区三区观看 | 91无人区乱码卡一卡二卡| 《朋友的妈妈2》中字头歌词华丽的外出| 欧美成人中文字幕视频网站| 欧美国产日韩综合| 激情文学午夜视频在线观看| 91在线公开视频| 免费+群p+视频| 免费无码毛片一区二三区| 丁香花高清在线完整版| 久久亚洲精品中文字幕波多野结衣 | 91中文字幕视频| 尤物在线观看网站视频免费播放| 99久久超碰中文字幕伊人| 国产一区二区三区免费观看在线| 国内精品国语自产拍在线观看| 粉嫩小泬无遮挡BBBBB图片| 天天狠天天天天透在线| 中文有码人妻熟女久久| 中文资源在线天堂库8| 偷拍激情视频一区二区三区| 一本一本久久a久久精品综合不卡| 好吊妞国产欧美日韩免费观看| 窝窝影院在线播放免费观看电视剧| 欧美aaaa视频| 免费成人网一区二区三区 | 尤物在线观看网站视频免费播放| 久久久久人妻一区精品果冻 | 无遮挡国产高潮视频免费观看互動交流| 五月丁香六月综合缴情在线| 琪琪在线影院电视剧免费观看| 国产精品主播在线| 国产互换人妻5P| 久久久久青草线蕉综合超碰| 欧美精品中文字幕中文字幕| 亚洲国产成人va在线观看天堂| 亚洲av色噜噜噜久久久女同| 1000部丰满熟女富婆视频| 天天摸夜夜添狠狠添高潮出水| 亚洲精品国产中文字幕在线| 亚洲第一成人在线| 日本黄色美女视频| 日本欧美国产在线视频一区| 亚洲不卡av一区二区三区| 教官用舌头猛烈进入丰满少妇视频 | 欧美日本三级少妇三级久久| 精品亚洲77777www| 国产精品h片在线播放| 男人操女人免费看网站亚洲欧美 | 日韩人妻不卡一区二区三区| 少妇下面好紧好多水播放| 成人嫩草97A片| 欧美精品久久久久久久久| 国产在线国偷精品产拍| 国产偷人妻精品一区二区在线 | 啊灬啊灬轻点第一次和外国人| 99热这里有的只是精品| 国产成人综合欧美精品久久| 强开小婷嫩苞又嫩又紧韩国视频| 国产黄色一区二区| 国产免费永久在线观看| 熟妇槡BBBB槡BBBB| 很色很爽很黄裸乳视频| 国产乱xxxxx978国语对白| 中文字幕资源在线| 中文字幕老妇昭和肉欲| 欧美视频在线观看精品二区| 高清一区二区三区日本久| 蜜臀国产在线观看激情网| 91pornyⅰ九色| 躁老太老太騷bbbb| 一区二区三区成人免费频| 四虎永久在线精品免费网站| 国产+日韩+欧美视频| 国产精品污污在线观看入口| 亚洲精品成人天堂一二三 | 爆黑正能量料最新| 三年片在线观看免费观看大全+下载 | 激情综合丁香五月| 精品高潮白浆喷水| 日韩人妻无码精品无码中文字幕| 狠狠色狠狠色合久久伊人| 国产成人精品18禁三区| 高潮+国产+在线观看| 精品国产乱码久久久久| 黄色片网站在线播放| 一区二区三区精品视频免费播放| 国产又粗又黄又硬又爽的毛片| 国产亚洲精品a第一页| 久久精品视频亚洲| 欧美乱妇日本无乱码特黄大片| 国产成人精品人人2020视频| 亚洲老熟女av一区二区| 囯产精品久久777777换脸| 国产+欧洲+日本| 日本三级在线视频| 久久久久综合一区二区不卡| 色久综合网精品一区二区| 天堂在线www四虎国产精品| 波多野结衣黑人149分钟| 可以免费观看的毛片| 鲁大师影视在线观看高清免费| 又大又紧又粉嫩18p少妇| 欧美黑人欧美精品刺激| 中日韩乱码一二新区| 色视频网站一区二区三区| 日韩欧美中文字幕在线一二三区| 夜噜噜久久国产欧美日韩精品| 真人少妇高潮久久免费毛片| 国产精品户露av在线户外直播| 国产区精品一区二区不卡中文 | 在线播放极品尤物魔鬼身材| 少妇伦子伦精品无吗| 亚洲成在人线av品善网好看| 99久久99久久精品国产片| 亚洲国产精华液网站w| 最新日韩精品中文字幕| 精品精品国产欧美在线| 狠狠躁天天躁综合网| 综合久久婷婷综合久久| 好男人资源在线www免费| 国产不卡av免费在线观看| mm131亚洲国产美女久久| 我要看欧美一级黄色录像| 国产成人精品日本亚洲77美色| 亚洲熟女av一区二区三区软件| 91久久久久久亚洲精品蜜桃 | 岛国在线观看网站| 欧美+国产+中文| assfree疯狂老妇熟女| 免费观看+影音先锋| 欧美偷窥清纯综合图区动图 | 国产99久久精品一区二区| 又粗又硬又黄的国产视频| 国产精品欧美一区二区三区不卡 | 免费精品国产一区二区三区| 国产美女在线精品免费观看| av一区二区在线播放| 色婷婷香蕉在线一区| 日本在线观看免费| 鲁大师影院在线观看| 亚洲人成未满十八禁网站| 久久婷婷丁香七月色综合| 国色天香成人一区二区| 亚洲国产专区校园欧美| 久久中文字幕一区二区三区| 永久免费精品精品永久| 另类图片+动漫+日韩| 欧美大片ppt免费2023| 亚洲国产精品久久久久福利| 欧洲精品视频在线| 国产v片在线播放| 久久综合九色综合欧美狠狠| 一区一区三区四区产品动漫| 国产精品夫妻视频| 风骚国产网站视频| 欧美+国产+在线观看| 国产精品女同一区二区久 | 国产+精品+在线观看| 最新黄色在线观看一区二区三区 | 一卡二卡三卡在线视频| 狠狠躁18三区二区一区| 日本免费一级特黄⊙大片欧美| 精品一区二区三区三区| 日韩精品成人亚洲欧美在线观看| 久久半精品国产99精品国产| 日韩国产一区二区三区| 图片区偷拍区小说区| 久久国产亚洲精品赲碰热| 六十路初撮り完熟在线播放| 国产在线高清精品一区免费| 青草伊人久久综在合线亚洲观看| 久久人人爽人人爽人人片亞洲| 99re这里只有精品在线观看| star+433+影音先锋| 欧美中文字幕一区二区三区乱码| 日本无卡无吗二区三区入口| 亚洲欧美丝袜精品久久中文字幕| 欧美亚洲另类日韩在线网页| 91麻豆国产自产在线观看亚洲| 人妻精品一区二区在线视频 |