精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請(qǐng)自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

国产麻豆亚洲欧美高清一区二区| 国产精品亚洲w码日韩中文| 制服丝袜在线视频| 亚洲永久精品ww47| 亚洲国产日韩精品在线观看| 野花社区www视频最新资源| 国偷自产一区二区三区在线视频| 中文字幕欧美一区在线视频观看 | 精品国产乱码久久久久久乱码| 亚洲综合色aaa成人无码| 丁香开心五月婷婷精品伊人| yy6080理aa级伦大片一级| 日韩精品一区二区在线观看网址| 91香蕉精品在线观看视频| 国产精品扒开腿做爽爽| 亚洲欧美国产一区二区三| 警花av一区二区三区| 欧美大片免费观看| 亚洲中文无码av永久| 黄色片网站在线观看| 黑人与中国少妇xxxx视频在线| 欧美日韩精品中文字幕一区二区| japanese色国产在线看免费| 久成人免费精品xxx| 亚洲乱码尤物193yw| 91精品国产色综合久久不卡98 | 国产精欧美一区二区三区久久| 99久久国产综合久久精品| 欧美熟妇交换做爰XXXⅩ网站| 国产美女在线观看| 国产一级特黄毛片| 欧美在线99香蕉在线视频| 已满十八岁免费观看电视剧软件下载| 免费中文字幕在线观看| 一个本道久久综合久久88| 国产一卡2卡3卡四卡精品国色无边| 东莞+无码+下载| 视频一区二区三区在线观看| 久久精品国产亚洲av成人久久 | 国产乡下三级全黄三级bd| 青娱乐国产盛宴视频在线观看| 西西GoGoGo高清在线完整版| 高H荤爽肉欲文〈np〉宝玉| 国产+欧美+激情| 欧美天堂在线视频| www.少妇影院.com| 国产成人精品免费视频| 香蕉久久av一区二区三区| 欧美成人精品区在线观看| 国产成人啪精品视频免费网页 | 日韩欧美精品一区| 国产精品永久免费视频| 亚欧乱色国产精品免费九库| 久久国产欧美日韩精品图片 | 无码人妻丰满熟妇啪啪网站| 做受不用下载在线观| 97人妻碰碰中文无码久热丝袜| av不卡国产在线观看| 成av免费大片黄在线观看| 久久免费看少妇高潮a| 91精品视频一区二区三区| 亚洲国产精品综合久久网各| 欧美综合在线视频| 中文字幕乱码亚洲无线三区| 精品亚洲国产成人av在线| 亚洲第一精品久久| 亚洲高清在线观看一区二区三区| 久久久福利视频免费观看| 97国产欧美人人爽人人做| 亚洲欧美日韩视频一区二区| 91精品视频在线观看专区| 国产在线乱码一区二三区| 国产av巨作丝袜秘书| 亚洲综合色aaa成人无码| 在线观看+中文字幕| 国产一级在线视频免费观看| 久久这里只精品国产免费99 | 久久精品国产亚洲av久野外| 亚洲成人久久一区二区三区| 国产激情久久久久熟女老人| 成在人线Aⅴ无码免费高潮水| 国内精品久久久久影院+日本| 国产精品+亚洲+欧美| 亚洲熟妇无码一区二区三区| 2019自拍偷拍| 国产天堂123在线观看| 少妇av一区二区三区无码| 中国猛少妇色xxxxx| 久久精品女人的天堂av| 精品一区二区三区三区| 亚洲欧美日韩国产一区二区在线| 精品久久久久久久久免费视频| 玩弄美艳馊子高潮无码| 亚洲无吗在线视频| 欧美日韩国产成人综合在线影院 | 精品国产麻豆免费人成网站| 国产在线乱码一区二三区| 最新69国产成人精品视频| 桃子视频在线观看免费视频网| 中文字幕第一区综合| 亚洲中文无码mv| 山东乱子伦视频国产| 中文天堂在线www| 久久精品国产亚洲αv忘忧草| 国产suv精品一区二区69| 国产精自产拍久久久久久蜜| 合不拢腿(双)by粗眉毛免费朗读 | juliaann一区二区三区| 国产精品三级国产精品高| 亚洲日韩国产精品第一页一区| 亚洲一级视频在线观看视频| 国产精品国精产品一二三区| 人妻少妇精品久久久久久| 91精品国产91久久综合| 亚洲精品午夜无码成人| 岛国精品一区二区| 国产高清在线a免费视频观看 | 交换一区二区三区va在线| 在线看片免费人成视频播| 国产成人亚洲欧美一区综合| 亚洲天堂成人在线观看| 暴雨入室侵犯进出肉体免费观看| 99久久精品国产波多野结衣 | 秋霞妓女影院在线播放| 日韩精品一区二区在线观看| 亚洲国产天堂视频在线播放| 蜜臀av无码一区二区三区| 国产精品不卡av| 精品国产乱码久久久久久口爆网站| 欧美成人高清视频| 武则天被狂躁C到高潮| 尤物网站视频免费看| 色综合a怡红院怡红院| 丰滿老熟婦HD六十| 天堂久久久久va久久久久| 日韩乱码在线观看免费视频网站 | 小俊┅┅快┅┅用力啊┅警花少| 亚洲啪啪aⅴ一区二区三区9色| 午夜精品久久久久久久| 欧美久久成人一区999| 亚洲一区二区三区高清av| 有码+日韩+在线观看| 99久只有精品免费视频播放| 国产精成人品日日拍夜夜| av天堂最近中文在线免费观看| 少妇高潮喷水久久久久久久久久| 九九久久国产一区二区三区| 亚洲日韩国产精品第一页一区| 日韩在线视频+在线播放| mm131亚洲国产美女久久| 拔插拔插海外华人永久免费| 麻豆果冻传媒精品+视频| 久久www人成免费看片中文| 久久免费观看视频| 国产一区二区三区免费在线| 天堂av资源在线| 小處女末发育嫩苞AV| 欧美aaaa视频| 777777国产7777777| 麻花传媒mv一二三区别在哪里看| 国产亲伦免费视频播放| 亚洲成色A片77777在线小说 | 懂色AV粉嫩AV蜜乳AV| 青青草在线视频网站| 亚洲人成综合网站7777香蕉| 国产成人avxxxxx在线观看| 中文字幕视频在线欧美一区| 蜜桃臀久久久蜜桃臀久久久蜜桃臀| 中文字幕+下载+人妻| 久久亚洲精品无码gv| 国产精品视频全国免费观看| 人妻少妇精品中文字幕AV| 欧美成人一区二免费视频小说| 黑人按摩人妻HD中字3| 久久久精品岩沢美穗| 少妇爽到呻吟的视频| 少妇孕妇丰满内谢视频| 亚洲国产精品av在线播放| 精品日韩国产一区二区三区| 日本人六九视频69jzz免费| 蜜臀久久99精品久久久久久婷婷| 国产乱码一区二区三区门上区 | 在线v片免费观看视频| 在线观看+中文字幕| 嫩草欧美曰韩国产大片| 国产孕妇乱子伦精品免费观看| 成人午夜视频免费在线观看| 无码人妻一区二区三区免费手机| 亚洲黄色中文字幕免费在线观看| 亚洲综合久久一本伊一区| 国产一区二区三区无修精品视频| 91资源新版在线天堂成人| 天天+来吧综合+亚洲| 美女在线观看免费视频网站| 无码aⅴ精品一区二区三区浪潮| 日韩+国产+在线高清| 国产边打电话边做对白刺激| 人妻无码熟妇乱又伦精品视频 | 欧美精品一区二区三区一线天视频| 国产美女久久久免费牲交| 午夜免费福利视频| 亚洲欧美另类在线图片区| 欧美黑人欧美精品刺激| 蜜臀精品国产高清在线观看| 亚洲第一极品精品无码久久| 999精品视频在这里| 日本欧美一级aaaaa毛片| 777婷婷天堂综合区色吧| 国产成人精品精品日本亚洲| 黑茎大战欧美白妞高潮喷白欤| 亚洲无线一二三四区手机| 欧美日韩盗摄一区二区三区| 日韩av中文字幕国产精品| 人妻熟女av一区二区三区| 色婷婷国产精品高潮呻吟av| 久久久久久久久久99精品| 新的天堂在线观看视频免费| 国产乱子经典视频在线观看| 日韩欧美精品一区二区蜜臀| 日本成人中文字幕| 忘忧草www中文在线资源| 久本草在线中文字幕亚洲欧美 | 麻豆专媒体一区二区| 亚洲福利国产网曝| 久久天天躁狠狠躁夜夜不卡| 亚洲欧美日韩制服| 97视频+国产日韩欧美| 国产在线拍揄自揄视精品按摩| 欧美日韩亚洲tv不卡久久| 国产精品zjzjzj在线观看| 欧洲丰满少妇做爰视频爽爽| 18+小视频+日韩毛片| 九九精品在线观看| 亚洲人交乣女bbw| 久久亚洲私人国产精品| 国产男女视频在线免费观看| 人妻熟妇乱又伦精品视频无广告| 国产偷抇久久精品a片69| 风韵犹存大屁股99AV| 亚洲成人在线免费观看| 一区二区不卡av免费观看| 久久久精品岩沢美穗| 中文字幕在线视频免费视频| 久久国产精品—国产精品| 中国老熟妇在线视频| 亚洲va欧美va天堂v国产综合| 久久人人爽人人爽人人片dvd| 情人伊人久久综合亚洲| 美女黄色私密视频在线观看免费| 337p日本欧洲亚洲大胆在线| 农村末发育av片一区二区| 少妇精品久久久久www| 淫臀艳妇(全)王雪琴| 国产欧美在线观看不卡| 亚洲婷婷综合久久一本伊一区| 又黄又爽全无遮挡的免费视频| 亚洲精品一二三区| 国产精品熟女高潮精品| 国产三级精品在线| 国产日韩精品一道在线观看| 辜莞允+无码+视频下载| 亚洲欧美激情五月在线观看| 淫语对白XXXHD| 欧美精品国产制服第一页| 8090成人午夜精品无码 | 亚洲精品国产精品乱码在线观看 | 羞羞色院91精品网站| 国产精品一区二区含羞草| 奶头好大狂揉60分钟视频| 免费在线观看一区| gogogo高清在线播放免费观看如果奔跑是湘 | 免费午夜福利不卡片在线播放| 亚洲国产日韩成人a在线欧美| 免费+精品+国产精品| 亚洲综合激情五月色一区| 人妻精品国产一区二区| 中国少妇无码专区| 久久综合亚洲欧美成人| 国产一区二区三区视频在线播放 | 成人亚洲欧美日韩在线观看 | 美女黄网站色视频免费观看| 国产成人高清在线观看视频| 樱花影院电视剧免费| 丰满少妇大力进入av亚洲葵司| 免费观看又色又爽又黄的崩锅| 亚洲美女中字幕视频在线观看| 一区二区免费欧美| 在线aⅴ亚洲中文字幕| 久久国产精品久久久久久电车| 亚洲精品美女久久久久99| 日韩午夜福利无码专区a| 久久久精品午夜国产免费| 国产免费一级毛卡片AAAAAA级| 亚洲一区天堂九一| 国产在线看老王影院入口2021| 丰满人妻熟妇乱又仑精品| 日韩成人av在线播放| 中文字幕丰满人伦在线| 中文字幕在线观看日本| 91久久精品国产| 加勒比色综合久久久久久久久| 人妻丰满熟妇av无码区免| 美女视频图片久久黄网站| 初撮り五十路老女人| 欧美熟妇丰满xxxxx裸体艺术| 人妖+码+在线观看| 巨乳童颜+影音先锋| 国产精品久久久久久影视不卡| 精品熟妇av一区二区三区四区 | 国产精品美女久久久久aⅴ| 国产高清视频在线| 国产成人综合久久免费| 五十路豊満熟女のお婆ち在线播放 | 亚洲无码视频一区| 中文有码人妻熟女久久| 丰满女人无套内谢| 成人+网站+日韩毛片| 亚洲精品无码你懂的网站| 永久综合精品网站在线免费观看| 日产精品成人av片免费看有码| 欧美精品在线观看第一页| 国产69精品久久久久9999不卡免费| 麻豆国产成人av高清在线| 欧美做受三级级视频播放| 日韩精品无码一区二区三区免费| 午夜理论片yy8860y影院| 国产精品欧美精品日韩专区一乛方| 亚洲AV欲女久久天天躁| 中文字幕在线免费观看一区二区 | 日韩精品久久久久久久的张开腿让| 78成人天堂久久成人| 国产高清精品福利私拍国产写真| 久久成人免费精品网站| 国产激情视频在线| 永久免费看成人AV的动态图| 国产成人精品久久二区二区四季| 一区二区三区在线欧洲污| 国产极品美女高潮抽搐免费网站 | 国产+jk制服+在线| 永久免费看成人AV的动态图 | 国产+高潮+真人| 国产亚洲成人av| 色悠久久久久综合网+香蕉| …伊人久久婷婷国产综合| 久久亚洲精品人成综合网| 99e久热只有精品8在线直播| 国产欧美日韩一区二区三区 | 开心五月激情五月俺亚洲| 午夜精品乱人伦小说区| 中文字幕亚洲精品无码| 国产+欧洲+日本| 图片区小说区视频区综合| 日韩一级毛一片欧美一级| 国产精品久久久夜夜高潮夜夜爽| www国产+欧美| 影音先锋+人妻斩| 国产精品美女久久久久久av爽| 极品少妇被猛的白浆直喷白浆| 国产区77777777免费| 9九色桋品熟女内射| 喷水+高潮+白浆| 日韩美女/一区二区三区| 91毛片在线观看| 2021久久超碰国产精品最新| 欧美日本韩国区一区二视频| 美国午夜福利视频一二区| 沈清秋屁股扒开臀缝调教| 国产农村妇女精品一二区| 国产又黄又大又爽| 成人欧美一区二区国产精品| 国产女主播精品大秀系列| 国产又爽又猛又粗的视频a片| 成人+在线+网站| 亚洲亚洲人成网站77777| 国产精品一卡二卡| 免费人成视频19674不收费| 久久国产精品久久久久久电车| 国产精品久久久久久久久潘金莲| 欧美一级a视频免费在线观看 | 久久无码人妻一区二区三区午夜| 成人做爰黄AA片免费看李晨视频 | 久久99男同女同国产观看| 国产成年码av片在线观看| 国产精品视频一区二区免费不卡| 贵州小少妇BBAABBAA视频| 99国产精品国产精品精品| 玩两个丰满老熟女久久网| 亚洲免费视频网站| 秋霞鲁丝片Av无码少妇| 熟女老阿V8888AV| 成在人线av无码免费看网站| 四虎影视国产精品| 乱码精品国产成人观看免费| 久蜜av色av熟女一区| 国产精品亚洲综合| 风间由美+五十路| 国产欧美一区二区精品久久久| 国产精品熟妇一区二区三区四区| 粉嫩一区二区三区四区公司1| 国产无遮挡又爽又黄不要vip| 国产高清av免费在线观看| 午夜丰满少妇高清毛片1000部 | 91九色porny首页最多播放| 日韩美女搞黄视频一区二区 | 免费欧美视频一区二区三区| 粉嫩呦福利视频导航大全| 试镜床戏(巨肉高h)| 精品久久国产字幕高潮一| 亚洲欧美成人一区二区三区| 日韩免费在线播放一级黄片| 91视频成人免费| 亚洲国产成人av| 久久九九久精品国产| 乱子伦息子一区二区| 色欲麻豆国产福利精品| 少妇激情偷人三级| 丰满美女一级视频一区二区三区| 播五月开心婷婷欧美综合| 1000部羞羞视频在线看视频| 精工厂777免费观看电视剧| 99亚洲精品久久久99| 久久男人高潮av女人天堂| 一级美国无码高清| 日韩av免费在线播放| 若妻~夫の肉欲中文字幕| 亚洲人成色77777在线观看大战| 亚洲国产精品s8在线观看| 探花视频免费观看高清视频 | 国产精品jk白丝蜜臀av小说| 日逼视频国产精品免费看| 久久久久久国产精品免费看| gogogo高清视频大全| 欧美丰满肥婆videos| 国产亚洲综合一区柠檬导航| 亚洲暴爽av人人爽日日碰| 黄页+国产+在线观看| 天堂在线中文网www| 日本在线观看www| 中文亚洲精品字幕在线观看| 欧美日本一区二区三区免费| 中国女人黄色大片| 别揉我奶头~嗯~啊~少妇| 精品久久久久久国产免费| 亚洲国产成人精品女| 国产一区二区三区在线看麻豆| 桃花岛成人在线观看| 久久激情久久久久久久熟女| 日韩精品视频在线观看一区二区 | 无翼乌18禁全肉肉无遮挡彩色| 国产成人av不卡免费观看| 欧美一区二区三区四区在线| 真人做爰视频成人观看| 在线看片免费人成视频播| 一区二区三区四区亚洲| 偷拍东北熟女乱xxxxx| 国产成人精品免费视频大全最热| 按摩轻轻挺进人妻| 中日韩乱码一二新区| 亚洲国产中文字幕| 美日韩熟女与少妇精品激情| 国产精品一区二区免费| 欧美日韩视频在线观看免费| 一本大道苍井空波多野结衣| 国产成在线观看免费视频密| 成人免费在线网站| 亚洲黄色一区大陆av剧情| yy777777丰满少妇影院| 日日摸夜夜添夜夜添欧美毛片小说| 五月婷婷丁香在线| 丰满熟妇人妻av无码区| 东京热无码AV一区二区| 亚洲婷婷天堂在线综合| 国产伦精品一区二区三区综合网 | 对白清晰91Porn| 欧美亚洲日本一区| 夜鲁夜鲁狠鲁天天在线| 黑人一区二区三区| 国产精品久久久久久网站| 国产一区不卡视频在线播放| 国内精品久久久久影视| 日韩av手机在线免费播放| 欧美成人中文字幕视频网站| 国产+很黄+视频| 亚洲精品视频三区| 日韩av不卡在线观看| 色欲AV伊人久久大香线蕉影院| 99国产精品中文字幕在线观看| 一女三黑人理论片在线| 黄色一区二区三区在线观看| 午夜福利+麻豆+国产| 亚洲爆乳大丰满无码专区| 伊人久久大香线蕉av色| 国产精品久久一区二区三区动| 久久久精品7777777| bt在线www天堂网在线| 国产+精品+aa| 黄色激情视频网站| 亚洲精品久久久久久久久毛片直播| 国产黄色福利网站| 欧美日韩一级片在线免费观看| 很色很爽很黄裸乳视频| 午夜精品久久99蜜桃的功能介绍| 美女又爽又黄又免费网站| 妺妺窝人体色777777粗玫瑰园| 上海熟搡BBB搡BBBB| 国产精品一av一免费爽爽| 久久久青草青青亚洲国产免观 | 视频+成人+在线| 国产曰又深又爽免费视频| 不卡+一区二区视频+日本| 久久亚洲精品小早川怜子| 亚洲Av乱熟妇A片大全| 护士被黑人狂躁A片| 亚洲免费网站观看视频| 日本中文字幕亚洲乱码| 91免费国产高清视频| 亚洲2017天堂色无码| 成人精品啪啪欧美成| 黄色精品一区二区三区| 欧美+国产+精品| 在线+中文字幕在线观看| 人妻熟妇乱又伦精品视频无广告 | 国产一区二区在线观看免费视频 | 黑人巨茎绿帽人妻| 免费+国产+ktv| 黄页免费视频网站国产一区| 偷拍真实偷窥XXX盗摄| 久久国产乱子精品免费女| 久艹在线观看视频| www.精品综合久久久久| 中文字字幕永久在线观看| 日本黄色视频一区二区免费| 丰满美女一级视频一区二区三区| 山东乱子伦视频国产| 狠狠狠综合7777久夜色撩人| 羞羞漫画+在线播放| 国产乱妇乱子在线播放视频| 青青色国产手机在线观看| 免费+国产+麻豆| 国产av丝袜一区二区三区 | 国产精品99久久久久久董美香| 亚洲一区二区经典在线播放| 无翼乌18禁全肉肉无遮挡彩色| 中文字幕日本在线| 国产亚洲精品久久久久久入口| 极品气质女神呻吟娇喘91| 国产传媒麻豆剧精品av国产| 国内精品在线观看看| 337p大尺度啪啪人体午夜| 国产精品岛国久久久久久久久红粉| 久久国产精品久久久久久电车| 日本老熟欧美老熟妇| 在线看片免费人成视频国产片| 中文字幕日产乱码一区| 精品蜜臀av在线天堂| 亚洲视频一区二区在线免费观看| 亚洲精品国产av日韩精品| 最近2019年中文字幕视频 | 久久久99无码一区| 日本亚洲视频在线不卡免费 | 国产一区二区三区在线乱码| 亚洲亚洲人成网站网址| 日日噜噜夜夜狠狠久久无码区| 四川少妇搡BBB搡BBB搡多人伦| 免费看无码网站成人A片| 午夜精品久久久影视优势| 中文天堂在线www最新版官网| 久久精品国产99国产精2021| 超碰国产精品久久国产精品99| 52熟女露脸国语对白视频| 少妇爽到呻吟的视频| 久久国产精品久久喷水| 欧美精品久久久久久久久久久| 精品国产精品一区二区夜夜嗨 | 亚洲精品无码专区久久久| 18+看片+日韩毛片| 日韩人妻无码一区二区三区| 在线免费观看尤物色视频网站| 欧美一区二区三区四区在线| 亚洲精品久久久久久久观看| 中学生+国产+磁力链接| 国产三级在线免费观看| 97视频+国产日韩欧美| 91麻豆国产精品91久久久久| 精品美女一区二区| 91国偷自产中文字幕久久| 国产亲妺妺xXXX888869| 亚洲成AV人片一区二区密柚| 日韩av无码久久一区二区| 亚洲精品毛片一级| 亚洲婷婷天堂在线综合| 一二三四日本中文在线| 国产精品久久久久久婷婷| 国产乱码一区二区三视频| 日韩激情一区二区三区| 亚洲最新中文字幕成人| 97SE亚洲精品一区| 亚洲天堂第一在线视频看看| 国产欧美va天堂在线观看视频下载| 久久免费视频精品在线| 国产一区二区三区导航| xfplay+无码| 免费av大全网站在线观看| 亚洲精品无码久久久久不卡网址| 大地资源中文一二三页的特点| 三级国产在线观看| 国产激情美女久久久久久吹潮| 狠狠躁18三区二区一区| 妺妺窝色77777777野| 久久99精品国产麻豆婷婷| 国产美女网站18禁| 亚洲福利国产网曝| 伊人成人开心婷婷久久网| 欧美一区二区三区在线视频观看| aⅴ网站在线观看| 国产精品国产精品国产专区蜜臀ah| 一区二区三区四区免费视频| 久久久一区二区三区国产精品| 色丁狠狠桃花久久综合网| 中文字幕免费高清电视剧网站| 日韩av在线一区二区三区| 在线天堂中文最新版www| 99精品国产99欠久久久久| 99久久综合伊人东京热| 高潮+国产+喷水| mm131亚洲国产美女久久| 破了亲妺妺的处免费视频国产| 日韩精品手机在线| 日本高清在线观看视频www | 一级做a爰片久久毛片16| 八戒视频在线观看免费播放电视剧| 国产成人精品一区二区在线观看| 91视频中文字幕| 成年人免费视频在线| 中日韩国产高清在线观看| 亚洲a∨无码精品色午夜| 经典三级+少女潘金莲| 激情影院免费视频试看| 国产xxxx视频在线观看| 日本五十肥熟交尾| 99国产精品18久久久久久| 狠狠婷婷色五月中文字幕| 嫩草一区二区极品在线观看| 日韩成人中文字幕| 国产色A∨在线看精品| 国产Av午夜精品一区二区三区 | 一个人午夜观看在线中文字幕 | 国产乱xxxxx97国语对白| 最新国产视频一区二区三区| 99久久免费精品国产72精品九九| 欧美一区二区精品在线观看视频| 91福利视频在线| 亚洲一区二区三区日韩在线视频| 欧美国产精品国产三级国产AⅤ下载| 在线观看亚洲天堂视频网站| 国产后入激情视频在线观看| 无码人妻少妇久久中文字幕蜜桃| 久久久国产精品免费| 国产欧美一区二区三区午夜精品 | 变态另类天上人间| 日本在线观看免费| 久久人妻天天av| 国产精品18久久久久白浆软件| 七仙女大乳全黄裸体| 国产成人免费午夜不卡视频| 国产av亚洲第一女人av| 东北中熟妇高潮50分钟| 91porny首页入口| 91精品久久久蜜桃网站| 国产精品自拍在线观看| 国产精品一级片久久久久| 亚洲欧美国产一区二区三 | 一卡二卡三卡视频| 国产乡下三级全黄三级bd| 成人做爰A片免费看网站草莓| 久久免费午夜福利院| 亚州国产av一区二区三区伊在| 成人精品日韩一区二区蜜臀| 国产精品青青在线麻豆| 精品人伦一区二区三区蜜桃网站| 欧美超碰精品中文字幕在线| 国产人交视频xxxcom| 嫩草一区二区极品在线观看| 亚洲国产综合久久一区二区| 亚洲一区二区三区四 | 波多野结衣被躁120分钟小说| 欧美日韩中文字幕在线xxx| 亚洲男人的天堂在线aⅴ视频| 欧美综合一区二区三区在线播放| 欧美亚洲日韩国产人成在线播放| 精品久久亚洲中文不卡| 久久综合狠狠色综合伊人| 午夜福利不卡在线视频| 国产精品99久久久久久久久久久久| 精品国产不卡一区二区三区| 国内精品国语自产拍在线观看| 国产av一区二区三区天美| 色拍自拍亚洲综合图区| 在线观看免费视频日本高清| 国产美女视频免费观看的软件| 精品97国产免费人成视频| 日本中文字幕精品| 男女久久久国产一区二区三区 | 亚洲va久久噜噜噜久久| 成人+网站+日韩毛片| 狠狠婷婷色五月中文字幕| 三年在线观看中文免费观看| 91看片淫黄大片一级在线观看 | 欧美日韩亚洲视频一区二区三区| 日本+熟女+磁力链接| 91精品国产91久久综合| 色综合久久久久综合99| 国产精品久久久久久a..| 日韩字幕西瓜视频在线观看| 柳州莫菁菁av一区| 天天澡天天狠天天天做| 国产高潮在线观看www| 国产精品成人免费视频网站| 国产+欧美+日韩| 精品人伦一区二区三区蜜桃网站| 亚洲第一精品在线免费观看| 麻豆精品一区综合av在线| 久久久久国产视频| 国产亚洲五月天综合91| 日韩美女精品一区在线视频| 亚洲日本在线在线看片4k超清| 美女极度色诱图片www视频| jizz亚洲女人| 日韩欧美亚洲综合久久影院| 久久久国产免费美女视频| 亚洲精品久久久久久中文传媒 | 色婷婷亚洲婷婷7月| 精品乱人码一区二区二区| 精品乱码蜜桃久久久久久| 99久久国产综合久久精品| 天天视频在线观看免费精品| 天堂岛视频在线观看欧美日韩 | 日本人六九视频69jzz免费| 欧美日韩精品人妻三区东京热| 300部大龄熟乱视频| 精品视频一区二区三区| 国产高潮又爽又刺激的视频免费| 小芳~婬荡~嗯啊好深视频| 中文字日产幕乱五区久久夜色精品国产欧美乱 | 亚婷婷洲av久久蜜臀小说| 高h肉放荡爽全文寂寞少妇 | 日本一道一区二区视频| 亚洲欧美在线视频| 无码人妻一区二区三区免费手机 | 国产精品三级国产精品高| 欧美日本国产韩国在线不卡| 国产亚洲欧美专区精品| 国产精品久久久久久免费播放| 色婷婷六月亚洲婷婷丁香| 国产成人avxxxxx在线观看| 国产成人精品久久一区二区| 亚洲精品第一国产综合野| 91香蕉精品在线观看视频| 成年偏黄全免费网站| 四川寡妇搡BBB爽爽爽| 日本打白嫩屁股视频| 桃花岛成人在线观看| 青青草视频+在线观看| 亚洲成人久久一区二区三区| 青草青草久热国产精品| 狠狠躁夜夜躁人人爽天天bl| 国产精欧美一区二区三区久久| 国产精品欧美一区二区三区喷水| 大尺度做爰黄9996片视频| 欧美精品v国产精品v日韩精品| 在线日韩中文字幕| 久久免费的精品国产v∧| 日韩人妻无码精品系列专区| 色猫咪免费人成网站在线观看| 99热精品国产三级在线观看| 91丨九色丨尤物| 国产亚州精品女人久久久久久| 亚洲伦无码中文字幕另类| 久久中文免费视频| 丰满人妻被黑人中出849| 国产精品免费视频网站| 欧美99热这里都是精品| 国产精品美女久久久久av丝袜| 一级A片60分钟免费看| 国产精品日本一区二区不卡视频| 国产三级片在线视频观看| 国产又色又爽无遮挡免费| 国产免费高清视频在线一区| 四川女人毛多水多A片| 99国产精品片久久久久久| 亚洲Aⅴ成人精品一区二区三区| 国产成a人亚洲精品在线观看| 欧美日韩中文字幕在线xxx | 鸭子tv国产在线永久播放| 精品欧美国产一区二区三区| 无码中字视频网址大全| 亚洲欧洲免费黄色视频| 久久九九久精品国产| 亚洲最新中文字幕成人| 91精品情国产情侣高潮对白文档 | 亚洲精品一线二线三线无人区| 在线视频欧美亚洲| 国产日韩欧美91| 青青草+深夜福利+免费观看| 欧美大片免费观看网址| 国产精品国产自线拍免费软件| 国产真实露脸精彩对白| 广东少妇大战黑人34厘米视频| 欧洲一区二区成人| 亚洲已满18点击进入在线看片| 国产又猛又粗又爽又黄91| 中文字幕国产专区欧美激情| 97久久精品亚洲中文字幕无码| 中文字幕一区二区三区乱码在线 | 国产日韩欧美综合精品一区二区 | 国产剧情国产精品一区| 护士洗澡被狂躁A片在线观看| 欧美日韩国产激情一区二区三区| 午夜福利一区二区三区高清视频 | 乌克兰女人大白屁股ass| 18+视频在线看| 亚洲精品成人久久av| 亚洲永久免费视频| 国产精品六九久久久久不卡| 狂躁欧美肥臀大BBBB| 日韩精品一区二区色偷拍| 亚洲精品午夜视频| 欧美成a人片在线观看久| 一本色道88久久加勒比精品| 婷婷久久久综合一区二区三区| 日韩欧美国产一区二区三区久久| AV不卡在线永久免费观看| www超碰97com| www.免费视频| 99久久精品无免国产免费| 国产无人区码一码二码三mba| 亚洲影院中文字幕| 91久久久久久国产精品| 国内精品九九久久久精品 | 人妻无码熟妇乱又伦精品视频| 日韩激情免费视频一区二区 | 黄色小视频在线看| 亚洲福利视频在线| 久久天天躁狠狠躁夜夜网站| 中文字幕在线影视| 一个人午夜观看在线中文字幕| 天天爽夜夜爽国产精品视频| 久久久av高清一区二区| 波多野结衣亚洲视频| 午夜精品a片一区二区三区老狼| 丁香色欲久久久久久综合网| 九九久久99综合一区二区| 婷婷色国产偷v国产偷v小说| 久在线观看福利视频| 久久男人高潮av女人天堂| 国产精品久久久久久无人区| 18+在线观看网站| 最近中文字幕++中文| 日本少妇中文一区在线激情| 少妇高潮7777777丫乄| 亚洲成人av在线| 六月丁香婷婷综合| 久热香蕉最新精品视频在线观看| 迅雷+无码+椎名| 高清国产亚洲精品自在久久| 真人抽搐一进一出视频| 国产精品久久久久久久一级 | 日韩欧美中文字幕1区在线观看| 欧美+国产+麻豆| 精品国产乱码久久久久| 无码区日韩特区永久免费系列| av久一区二区国产在线观看| 中国猛少妇色xxxxx| 高潮+白浆+在线观看| 中文字幕高清在线| 精品国产污污免费网站入口自| 国产ae86亚洲福利入口| 六十路初撮り完熟在线| JIZZJIZZ亚洲无乱码| 欧美+国产+在线观看| av男人天堂最新亚洲天堂| 日产精品一二三四区国产| 张津瑜国内精品www在线| 国产+在线+超碰| 在线v片免费观看视频| 久久青青草原国产毛片夜夜亚洲| 最新av偷拍av偷窥av网站| 色欲香天天天综合网站| 久久99国产综合精品女下载同| 国产又大又猛又粗视频在线观看| 国产美女久久免费视频网站| 欧美高清美女视频一区二区三区| 99精品视频九九精品视频| 久久久久国产精品视频| 国产伦理久久精品久久久久| 国产精品久久久久久久一级| 国产日韩欧美91| 中文字幕av一区二区三区| 亚洲欧洲精品成人久久av18 | 国产精品久久国产| 欧美+国产+中文| 最近最新在线中文字幕mv免费| 国产精品一区二区av在线| 亚洲午夜免费福利av| 老牛影视AV牛牛影视av| 无码AV最新无码AV专区| 久久伊人精品视频| 一本一道色欲综合网| 洗澡被公强奷30分钟视频 | 18禁止的网站黄污污| 日韩欧美中文字幕1区在线观看 | 亚洲成aⅴ人在线视频| 久草在线视频免费资源观看| 国产美女极度色诱视频www| gogogo手机高清视频免费观看| 四川少妇高潮无套毛片| 国产又粗又硬又爽又猛又黄视频| 国产亚洲精品久久久久久小舞| 九九视频在线播放| 欧美三级韩国三级日本播放| 欧美精品v欧洲高清视频在线观看| 日本一区二区视频免费| 18+免费视频下载| 99热热久久这里只有精品| 日本道二区免费v| 国产亚洲精品a第一页| 美女视频一区二区在线观看| 久久久精品视频网站| 在线播放+国产+清纯| 国产精品久久久久久成人 | 国产一区二区三区免费在线| 久久精品国产亚洲七七 | 一区一区三区产品乱码亚洲| 天天躁夜夜躁天干天干2022| 亚洲第一美女精品久久久久| 国产+传媒+国产av| 日韩欧美成人精品一区二区三区| 日本免码va在线看免费| 人小说网站在线观看| 蜜桃视频一区二区三区在线观看| 国产又黄又猛又粗又爽的久久久| 深夜激情18禁亚洲蜜臀av| 中文字幕丰满乱子无码视频| 91高清在线视频| 精品亚洲77777www| 精品人人妻人人澡人人爽牛牛| 亚洲精品乱码久久久久久按摩 | 国产精品综合第56页| 风流少妇一区二区三区91| 欧美大片一区二区三区视频| 在线aⅴ亚洲中文字幕| 97成人精品区在线播放| 无码aⅴ精品一区二区三区浪潮| 亚洲亚洲人成网站网址| 9l国产精品久久久尤物av| 人妻被按摩到潮喷中文字幕| 无码专区人妻丝袜| xfplay+无码| 日本xxxxx片免费观看19| 国产高清吃奶成免费视频网站| 亚洲伊人网精品在线观看| 国产日韩欧美精品| 国产超碰人人做人人爽av大片| 久久九九视频观看97香蕉国产| 欧美一级免费在线观看视频最新| 六十路初撮り完熟在线| 韩国和日本免费不卡在线v| 午夜乱码爽中文一区二区| 日本三级视频在线播放| 美女视频黄的全免费视频网站 | 欧洲人妻丰满av无码久久不卡| 欧美成人免费全部| 亚洲精品无码播放。| 国产精品一区二区欧美| 顶级欧美熟妇xx| 欧美+国产+中文| 羞羞影院午夜男女爽爽免费| 清纯唯美一区二区三区| 日本精品中文字幕在线播放| 18+日本一区二区| 人妻丰满熟妇av滝川恵理| 国产人妻人伦精品潘金莲| 国产成a人亚洲精品在线观看 | 最新黄色在线观看一区二区三区| 国产三级国产三级国产| 探花风韵犹存少妇88AV| 97人妻在线视频免费观看| 99国产精品久久久久老师| 国产亚洲Av人片在线观看| 日本在线观看www| 人人澡人人澡人人看添| 亚洲男人天堂综合在线视频| 国产精品一区二区av在线| 中文字幕亚洲欧美在线观看| av在线免费观看一区不卡| 金银瓶1—5普通话版| 少妇荡乳情欲办公室毛片一区二区| 亚洲+变态+欧美| 中文字幕大看蕉在线观看| 亚洲欧美在线一区中文字幕| 中文字幕日韩一区二区不卡 | 精品在线观看一区| 亚洲一区在线免费| 欧美一区精品中文字幕综合看片| 亚洲永久免费视频| 国产精品久久久久久久模特人妻| 国产在线清纯极品美女援交| 国产成人精品久久二区二区四季| …伊人久久婷婷国产综合| 国产免费黄色小视频| 最新在线精品国自产拍视频| 欧美+国产+极品| 风流少妇一区二区三区91| 国产麻豆一精品一av一免费| 一本岛高清乱码2020叶美| 成人在线免费观看视频| 国产毛片久久久久久久18| 黑人精品一区二区| 少妇久久久久久被弄高潮| 欧美精品国产制服丝袜第一页| 精品国产美女av久久久久 | 一区精品在线观看| 亚洲精品第一国产综合麻豆| 亚洲欧美中文字幕在线观看| 96亚洲精品久久久蜜桃| 天天操天天舔天天干| 精品美女免费视频wwxx| 国产18高清视频在线观看| 午夜久久久久久久久| 国产激情视频在线播放| 中文字幕乱码一区av久久不卡| 亚洲aaaaaaa| 欧美三级+不卡+在线观看| www黄色com| 国产+白浆+免费| 国产一级在线视频免费观看| 窝窝影院在线播放免费观看电视剧 | 欧美成人一区二免费视频小说| 96国产xxxx免费视频| 国产美女免费网站| 国产在线清纯极品美女援交| 一区一区三区产品乱码亚洲| 48手+真人+无码| 高清无码不用播放器av| 日韩成人av免费在线观看 | 精品老熟妇一区二区三区| 一本色道婷婷久久欧美| B老骚B老熟B老太中国老骚B| 99re在线视频这里只有精品 | 久久99精品久久久久久熟女影| 又大又黄又粗高潮免费| 欧美牲交a欧美牲交aⅴ免费| 久久天天躁狠狠躁夜夜2020一| 欧美不卡一卡二卡三卡| 久久久久午夜精品色av| 国产无人区码一码二码三mba| 亚洲香蕉视频综合在线| 国产区精品一区二区不卡中文| 日本爽爽爽爽爽爽在线观看免| 国产欧美国产精品第一区| 国产精品久久久久久婷婷天堂| 国产精品手机视频| 一本色道久久综合亚州精品蜜桃| 亚洲AV综合A色AV中文| 无码专区人妻丝袜| 久久99av无色码人妻蜜柚| 亚洲国产成人精品女| 成人国产精品免费网站| 国产精品六九久久久久不卡| 欧美精品在线观看第一页| 欧美+国产+中文| 日本一卡二卡不卡视频查询| 黄色软件网站入口| 日韩视频在线观看免费| 色欲麻豆国产福利精品| 九九在线视频这里只有精品 | 色88久久久久高潮综合影院| 中文字幕亚洲综合久久综合| 拍拍拍无挡免费视频| 欧美成人午夜剧场| 国产区77777777免费| 日日噜噜夜夜狠狠久久av小说| 中文字幕国产专区欧美激情| 欧美+日韩+国产在线| 色视频免费在线观看| 亚洲欧洲AV无码区玉蒲区| 国产精品视频男人的天堂| 在线观看精品日中文字幕| 国产午夜精品高清在线观看| 亚洲国产人成自久久国产| 影音先锋+出轨的妻子| 另类内射国产在线| 中文字幕一二三区波多野结衣| 第一页中文字幕在线观看| 破鞋熟女AV导航| 国产三级在线三级久操欧美| 五月天精品视频在线观看| 东京热一精品无码av| 国产成人精品白浆免费视频试看 | 精品国产av一区二区三区√| 18+成人在线观看| 国产福利高颜值在线观看| 波多野结衣一二三四区| 久久久亚洲欧洲日产av| 亚洲中国国产av| 13一16女处被毛片视频 | 亚洲av成熟国产一区二区三区| 一级A片60分钟免费看| 免费又黄又湿又爽的视频| 成人a大片在线观看| 精品精品国产欧美在线| 国产欧美一区二区三区免| 永久黄网站免费在线观看| 老牛影院在线观看免费下载电视剧| www久久久久久久久| 国产亚洲视频在线播放香蕉| 日韩一级片在线观看| 国产乱子伦无套一区二区三区| 久久精品成年人免费看国产片 | 亚洲欧洲国产成人综合在线| 久久女人天堂精品av影院麻| 48手+真人+无码| 精品无码成人久久久久久| 女人被狂c到高潮视频网站| 交专区videossex| 精品日韩一区二区五月天| 国产精品久久婷婷六月丁香| 久久99久久99精品免视看| 午夜精品一二三区| 亚洲欧美精品午睡沙发| 欧美成人+www+一区二区| 欧美日韩视频在线观看免费 | 久热99精品视频免费观看免费| 少妇又色又爽又刺激视频| 91看片在线播放| 亚洲欧美日韩_欧洲日韩| 视频一区二区三区亚洲天堂网| 探花视频免费观看高清视频| 国产美女久久久免费牲交| 可以在线看的av网站| 两人午夜免费观看www| 亚洲另类精品无码专区| 国产精品久久久久久久久裸体| 无套内内射视频网站| 亚洲精品自产拍在线观看动漫 | 午夜成人片在线观看免费播放| 成人免费在线观看h视频| 国产精品熟女高潮精品| 国产精品一二三区在线观看| 精品久久久久久免费观看| av不卡国产在线观看| 无码中文字幕ⅤA精品影院| 韩国无码精品1区| 偷青青国产精品青青在线观看 | 欧美熟妇交换做爰XXXⅩ网站| 亚洲一区二区三区四区五区黄| 亚洲国产剧情在线精品视| 国产精品欧美三区四区五区| 涩涩网站在线观看| 国产后入激情视频在线观看| 九九热久久久99国产盗摄蜜臀| 国产一级片免费在线观看| 天天摸夜夜添狠狠添高潮出水 | 成人在线手机视频| 97中文字幕在线观看| 99精品视频在线观看婷婷| 亚洲欧美天堂在线观看视频| 国产+高潮+白浆| 国产+激情+在线观看| 日韩毛片+18+成人网| gogogo免费高清完整| 搡BBBB搡BBBB搡BBB| 中文字幕+欧美+日韩| 欧美精品欧美极品欧美激情| 国产亚洲第一精品好爽视频| 东北粗壮熟女丰满高潮| 国精品产品区三区| 欧美大片ppt免费2023| 久久青青草原精品国产app| 999久久久久久久久6666 | 中文字幕+日韩在线视频| 久久六热视频精品女人66| 国产精品―色哟哟| 法国色情巜卧室肉欲| 99久久精品无免国产免费75| 美女视频一区二区三区| 伊人久久大香线蕉av最新| 欧美亚洲日本国产爽快片| 成人做爰高潮A片免费视频| 亚洲国产精品s8在线观看| 亚洲一区天堂九一| www欧美国产丝袜一区二区| 欧美伊香蕉久久综合网另类| 秘书奶咪子真大高H乳夹| 精品国产一区二区三区色欲| 亚洲va久久久噜噜噜熟女软件| 欧美日韩在线播放| 日本精品一卡二卡三卡四卡视| 国产一区二区三区在线乱码| 天堂а√在线地址8中文种子| 国产+在线观看+免费| 在线观看一区二区三区四区| 欧美精品午夜一区二区三区| 久久久久久久一区| 在线看人妻视频中文字幕| 亚洲精品视频在线观看网址网站| 高潮+国产+在线观看| 实拍国产永久免精品视频| 亚洲第一视频在线| 国产精久久久久久一区二区三区 | 一区二区丰满视频免费观看| 52熟女露脸国语对白视频| 香蕉视频在线观看黄| 久久视频这里只精品| 尹人久久久香蕉精品| 超碰cao已满18进入离开官网| 国产精品国产自线拍免费软件 | 国产精品自在线拍国| 2018av无码视频在线播放| 国产艳妇av在线| 区二三区四区精华日产一线二线三| 欧美老妇另类老屁XXX| 26uuu久久噜噜噜噜| 精品国产日韩欧美一级一区二区三区| 亚洲无AV在线中文字幕| 九九热线有精品视频86| 欧美亚洲国产日韩一区二区| 新无码毛片一区二区有码| 国产精品v欧美精品v日韩精品v | 中文日韩v日本国产| 五十路豊満熟女のお婆ち在线播放| 中文字幕永久视频| 国产精品中文字幕日韩精品| 最新版天堂资源中文在线| 欧美污视频免费在线观看| 亚洲欧美综合精品另类天天更新| 成人免费播放一区二区三区| 欧美群交射精内射颜射潮喷 | 在线观看成人小视频| 欧美日韩亚洲一区二区三区一| 一个人在线观看国产精品www| 若妻~夫の肉欲中文字幕| 国产免费一级淫片a级中文| 精品国产无乱码一区二区| 日韩亚洲国产中文字幕欧美 | 亚洲视频一区二区在线免费观看| 国产91精品欧美| 嗯高阿宾福利视频| 激情综合丁香五月| 91麻豆精选国产自产免费观看| 精品丝袜国产自在线拍小草| 91天天综合免费看国产| 欧美一卡二卡三卡四卡视频区| 好吊妞国产欧美日韩免费观看| 日本高清在线观看视频www| 青青草+深夜福利+免费观看| 精品+国产+传媒| 91精品国产色综合久久不8| 高清欧美精品xxxxx| 欧美污视频在线播放网址| 国产+免费+福利| 午夜福利精品亚洲不卡| 中出老熟女中文字幕| 日日鲁夜夜如影院| 久久精品国产自清天天线| 亚洲三级在线观看| 亚洲av无码专区首页第一页| 粉嫩av一区二区三区四区五区| 国产精品黄色av| 亚洲AV综合在线| 日本老熟欧美老熟妇| 美女黄网站色视频免费观看| 狠狠色狠狠人格综合| 国产免码va在线观看免费| 久久天天躁狠狠躁夜夜网站| 日本三级在线视频| 青青视频在线播放| 91精品国产综合久久久蜜臀九色| 九色porny视频| 久久精品国产—精品国产| 校园春色亚洲色图| 国产女人18毛片水真多成人如厕| 成人午夜视频在线观看| 狠狠色噜噜狠狠狠狠五月婷| 精品+国产+高潮| 99国产精品久久久久久久久久 | 亚洲精品一区二区三区香蕉| 国产偷国产偷亚洲高清人乐享| 国产剧情中文字幕一区二区| 美女动态视频久久久久久久久久| 波多野结衣无码一区| 制服丝袜美腿一区二区| 日韩av高清在线观看| 国产在线jyzzjyzz免费护士| 国产片在线天堂av| 亚洲精品无码不卡久久久久| 窝窝午夜精品国产| 国产精品一区二区av麻豆| 91丨porny丨在线中文| 精品亚洲国产成人av| 美女视频黄是免费| 国产免费黄色小视频| 免费观看真人视频直播7777| 久久亚洲春色中文字幕久久久| 亚洲美女视频网站| 欧美精品中文字幕中文字幕 | 亚洲色图日韩伦理国产精品| 又黄又粗又爽的免费视频| 亚洲国产av一区二区污污污| 亚洲乱码国产乱码精品精男男 | 久久精品国产亚洲av热一区| 91丨九色丨蝌蚪丰满| 久久久久国产精品视频| 国产精品一区二区三区九一麻豆 | 中文资源在线一区二区三区av| 亚洲中文字幕av一区二区三区| 国产精品久久久久久久久久吹潮| 国产91精品久久久久91痣美人| 久久久久久a亚洲欧洲av冫| 成品片a免费入口麻豆| 污网站在线免费看| 免费午夜无码18禁无码影院| 欧美在线看片a免费观看| 亚洲精品成人区在线观看| 国产欧美日韩一区二区国内| 天天天欲色欲色www免费| 2021久久超碰国产精品最新| 国产成人精品一区二区| 朋友的妻子+先锋影音| 欧美精品少妇videofree720| 久久精品久久久久久| 二区三区偷拍浴室洗澡视频| 国产精品原创av| 久久影视久久午夜| 亚洲欧美中文字幕在线net| 亚洲视频一卡二卡三卡四卡| 精品国产成人在线一区二区| 日日操日日射日日摸欧美| 日韩内射人妻1区2区3区| 91久久国产婷婷一区二区 | 国产+午夜福利+久久精品| 吃瓜爆料+每日大赛| 中文字幕+乱码+中文在线| 久久久精品7777777| 免费+群p+视频| 中文免费高清在线观看电视剧| 久久99精品国产麻豆| 丰满双乳峰白嫩少妇成人网站| 粉嫩小泬18XXXⅩ高潮| 亚洲+欧洲+日韩在线| 成人av婷婷一区二区三区| xxx日本一区二区免费| 欧美日韩国产高清一区二区三| 欧美日韩国产在线人成| 国产欧美日韩视频怡春院| 亚洲天堂制服丝袜在线观看| 教官用舌头猛烈进入丰满少妇视频| 久久久久国产一区二区三区不卡| 《朋友的妈妈2》中字头歌词华丽的外出| 精品国产成人a区在线观看| 中日韩国产高清在线观看| 成人羞羞国产免费软件小说| 亚洲成a∨人片在线观看不卡| 五月激激激综合网色播| 日韩内射人妻1区2区3区| 亚洲人成网站777色婷婷| 中文字幕高清在线| 一本之道色综合网站| 免费+日本+国产| 日本欧美一区二区三区乱码| 亚洲精品成人久久av| 亚洲视频一区二区在线看| 国产黄又爽免费在线观看的视频| 中文字幕av网页观看日韩| 久久久久人妻一区二区三区VR| 91欧美激情免费一区二区| 在线观看国产一区二区av| 国产亲子乱弄免费视频| 国产精品自产拍100在线观看| 丰满少妇高潮在线观看| 极品少妇被后入内射视| 国产实拍会所女技师在线观看| 狠狠亚洲婷婷综合色香五月排名| 中文字幕日韩一区二区不卡| 国产一二三四在线视频| 国产精品视频+白浆+免费视频| 国产免费永久在线观看| a亚洲va欧美va国产综合| 欧美视频在线观看免费www | 亚洲国产精品不卡av在线| 三级慰安女妇威狂放播| 久久久精品国产sm调教网站| 欧美肥屁videossex精品| 欧美+国产+中文| 午夜免费观看体验区入口av| 国产午夜福利精品理论片| 少妇av一区二区三区| 欧美激情视频免费| 成年人在线观看视频| 中文字幕丝袜人妻乱一区三区| 鲁大师影院在线观看| 五月天婷婷激情网| 成年日韩片av在线网站| 在线观看av网站永久免费观看| 1024国产成人精品视频| 黄色av小说在线观看| 亚洲午夜久久久精品影院| 18+男同+日韩毛片| 女同久久国产精品99国产精品| 免费观看一区二区三区视频| 波多野结衣亚洲视频| 9.1入口在线观看免费| 六月丁香婷婷综合| 18+欧美+日本| 亚洲美女黄色一级啪啪视频| 中文字字幕在线中文乱| 97色伦综合在线欧美视频| 80s+毛片+免费观看| 爽爽爽a男女免费观看一区二区| 欧美日一区二区三区| 星空传媒天美传媒有限公司| 国产三级一区二区三区视频播放 | 国产欧美亚洲麻豆天堂第一页| 亚洲狠狠婷婷综合久久久久图片| 99精品视频免费版的特色功能| 欧美日韩精品成人网视频| av动漫在线观看一区二区| a毛片终身免费观看网站| 亚洲欧美视频在线观看| 东京热特级变态被虐sm| 精品无人区麻豆乱码1区2区| 日韩中文字幕在线观看| 精品一区二区三区四区五区六区| 中文字幕永久视频| 精品一区二区三区四区| 国产a视频精品免费观看| 偷拍做爰吃奶视频免费看| 青草青草久热国产精品| 久久久精品国产免费观看一区二区| 中文+字幕+国产| 国精产品乱码视频一区二区| 97超级碰碰人国产在线观看| 中文字幕日韩三级| 91狠狠色综合久久久夜色撩人| 亚洲欧美日韩精品国产91 | 在线看片免费人成视频久网| 久久国国产免费999| 国产在线无遮挡免费观看| 国产偷国产偷av亚洲清高| 日本不卡视频一区二区三区 | 久久婷婷综合激情亚洲狠狠| 精品国产精品一区二区夜夜嗨 | 超碰夫妻91无码免费播放器| 国产69精品久久久久777| 91久久久精品国产一区二区蜜臀| 蜜臀av免费一区二区三区久久乐 | 小s货又想挨c了叫大声点男男| 亚洲精品国男人在线视频| 伊人久久精品无码av一区| 欧洲日韩亚洲无线在码| 人妻丰满熟妇av滝川恵理| 欧美xxxx做受欧美1314| 在线看片免费人成视频久网| 偷拍东北熟女乱xxxxx| 日韩av资源在线| 亚洲精品成人无码中文毛片不卡| 日韩人妻无码免费视频一区二区三区 | 午夜免费视频观看| 国产一级av一区二区在线| 婷婷色九月综合激情丁香| 亚洲大乳av成人天堂精品| 2020最新无码片中文字幕| 少妇荡乳情欲办公室毛片一区二区| 99久热re在线精品视频| 人妻熟妇乱又伦精品视频无广告| 日本人乱人乱亲乱色视频观看| 操老女人一区二区三区视频tv| 日本伦理中文字幕| 激情午夜福利在线视频观看| 国产精品久久久久久久久久免 | 国产精品青草综合久久久久99| 696息子精品一区| 人妻无码久久精品人妻| 免费+高潮+白丝| 亚洲成a人v欧美综合天堂麻豆| 国产+免费+日韩| 欧美肥臀大乳一区二区免费视频| 精品无人乱码一区二区三区的特点| 国产永久免费高清在线| 黑外教弄人妻波多野结衣| 女女女女女裸体开bbb| 国产日韩欧美在线一区二区三区 | 国产男女无遮挡猛进猛出| 亚洲高清码在线精品av| 怡红院一区二区三区在线| 欧美mv天堂在线免费播放| 六月婷婷在线观看| 成人福利视频在线观看| 日韩欧美丝袜中文字幕诱惑| 在线观看国产一区二区av| 国产丨熟女丨国产熟女视频| les欧美xxxxvideo| 精工厂777免费观看电视剧| 欧美一区二区三区红桃小说| 另类图片+动漫+日韩| 美女视频黄免费的亚洲男人天堂| 欧洲免费无线码在线一区| 人妻被按摩到潮喷中文字幕| 久久久精品午夜国产免费| 国产自偷在线拍精品热| 一级美国无码高清| 天堂岛视频在线观看欧美日韩| 无码aⅴ精品一区二区三区浪潮| 天堂av资源在线| 成年美女黄网站色大片免费看| TokyoKoT大交乱| 中文字字幕乱码视频高清| 久久亚洲精品中文字幕波多野结衣| 欧美不卡高清一区二区三区| 国产精品秘入口18禁麻豆免会员 | 亚洲av蜜桃永久无精品| 有码+日韩+在线观看| 国产精品久久久久国产三级传媒| 欧美激情伦理一区二区三区| 国产免费网站看v片在线无遮挡| 久久精品一区二区三区四区毛片| 欧美熟女五十路视频一区| 在线+中文字幕在线观看| www国产国人免费观看视频| 国产精品欧美三区四区五区 | 伊人国产精品影院在线观看| 18+在线视频观看| 337p日本欧洲亚洲大胆精蜜臀| 国产精品丝袜www爽爽爽| 国产午夜福利精品理论片| 欧美日韩国产一区精品一区| 国产伦精品一区二区三区精品视频| 亚洲综合色区另类小说| 国产一区二区蜜臀av在线| 日韩毛片+18+免费看| 日韩在线欧美在线| 日韩精品亚洲aⅴ在线影院| 亚洲一区天堂九一| 亚洲欧美日韩国产成人一区| 国产成人综合欧美精品久久| 欧美亚洲高清一区二区三区不卡| 亚洲天堂成视频在线观看| 天堂在线www天堂在线| 国产情侣在线播放| 国产欧美日韩高清在线不卡| 亚洲欧洲国产日韩在线不卡| 又粗又黄又爽视频免费看| 在线观看国产精品va| 久久av中文字幕| 日韩中文在线字幕| 69视频免费观看| 国产成人精品一区二区在线| 无码aⅴ精品一区二区三区浪潮| 日韩69永久免费视频| 一区二区福利视频| 国产经典一区二区三区| 久久精品人人做人人爽| 欧美不卡一区二区视频在线观看| 永久免费看成人AV的动态图| 欧美毛多水多黑寡妇| 亚洲男人的天堂在线aⅴ视频| 老汉tv永久视频福利在线观看 | 国产三级一区二区三区视频播放| 娇妻被朋友日出白浆| 久久国语精品三级亚洲一二| 成人无码专区免费播放三区| 狠狠噜天天噜日日噜色综合 | 国产精品免费观看久久| 精品美女一区二区三区瓯| 国产区一区视频在线观看不卡 | 最近中文字幕在线视频8| 成人免费无遮挡无码黄漫视频| 中文字幕+中文字幕在线| 特黄aaa片在线观看| 五月丁香综合激情| 1234区中文字幕在线观看| 国产女爽123视频.cno| 人人鲁人人莫一区二区三区| 亚洲欧洲日韩综合| 熟妇乱子伦海角社区| 亚洲乱码国产乱码精品精乡村 | 亚洲国产综合久久一区二区 | 欧美日本91精品久久久久| 亚洲综合色区中文字幕| 国产午夜精品福利视频| 国产精品精品久久久| 亚洲一区二区观看| 四虎永久在线精品免费网站| 国产精品久久久久久久久久久久午夜片 | 国产日韩欧美在线一区二区三区| 中国少妇大战黑人白浆| 特级西西444www大胆免费看| 国产高清精品久久久久久久| 磁力天堂torrent在线| 欧美日本一区二区三区| 怡红院最新免费全部视频| 久久天天躁狠狠躁夜夜av不卡| 亚洲欧美一区二区三区日产| 【快穿】淫交任务(高h| 亚洲人成网址在线播放| 国产免费的又黄又爽又色| 肉丝美足丝袜一区二区三区四| 久久国语精品三级亚洲一二| 欧美成人aaaaa片| 欧美肥屁videossex精品| 亚洲欧美日韩国产综合一区小说| 日韩精品国产一区在线久草| 91麻豆精品国产自产在线91| 农村末发育av片一区二区| 少妇精品久久久久www| 日韩精品免费视频| 黄色av一区二区| 久久99er精品国产首页| 日韩欧美国产一区二区三区久久 | 国产一级特黄毛片在线毛片| 91国產乱高潮白浆| 亚洲成av人片在线观看天堂无| 精品偷自拍另类在线观看| 高h肉放荡爽全文寂寞少妇 | 亚洲韩国日本va精品国产一区| 日韩精品人妻系列无码专区| 久久久久国产一区二区三区不卡| 人妻无码久久精品人妻| 日韩特级无码av中文字幕| 西西人体44WWW高清大胆| 亚洲精品久久久久久蜜桃| 欧美激情视频免费| 国产+欧美日韩+一区二区三区| 四虎影视国产精品永久在线| 狠狠躁夜夜躁人人爽天天开心婷婷| 国产亚洲精品久久久999| 亚洲色图欧美视频另类视频| 波多野结衣精品一区二区三区| 一本色道HEZYO无码专区 | 欧美精品在线观看第一页| 亚洲国产欧美中文手机在线| 樱花私人影院的电视剧特点| 中日av乱码一区二区三区乱码| 国产伦久视频免费观看视频| 久久男人高潮av女人天堂| 97国产人妻人人爽人人澡| 日日摸夜夜添夜夜添无码免费视频| 精品亚洲中文字幕东京热网站| 久久久麻豆一区二区三区四区| 黄色片在线观看免费| 亚洲国产日韩精品在线观看| 亚洲a∨精品一区二区三区| 国产精品永久久久久久久 | 欧美乱妇日本无乱码特黄大片 | 天堂在线www四虎国产精品| 精品精品国产自在97香蕉| 午夜免费播放观看在线视频| 五月婷婷丁香在线| 狠狠色综合Tⅴ久久久久久| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 怡春院国产精品视频| 成人免费观看cn| 久久久精品午夜国产免费| 成人秘视频一区二区三区| 黑外教弄人妻波多野结衣| 久久精品国产亚洲av成人婷婷 | 我们好看的2018视频在线观看| 亚洲精品成a人在线| 91精品国产综合久久福利软件| 婷婷亚洲久悠悠色悠在线播放| 17c.com喷水少妇| 黄色软件网站入口| 色偷偷人人澡人人添老妇人 | 射进来av影视网| 《玉女心经之观音坐莲》| 精品美女一区二区三区瓯| 亚洲熟女av天堂| 亚洲欧美视频在线观看| 99久久中文字幕三级久久日本| 另类+女同+影音先锋| 精品免费国产一区二区三区四区介绍| 强奷漂亮少妇高潮麻豆| 欧美在线视频在线观看一区| 成人国产免费视频| 欧洲av+成人+久久| 日韩中文在线字幕| 亚洲+无码+制服| 欧美日韩大香蕉岛国在线视频| 久久91精品国产91久久蜜月| 亚洲一卡二卡在线| 一区二区三区国产在在线播放| 丰满少妇高潮久久三区| 欧美日韩不卡在线视频| 六月丁香五月激情综合| 亚洲精品无码久久千人斩探花| 宅女午夜福利免费视频| 日韩精品人成在线播放| 狠狠色婷婷久久综合频道日韩| 国产精品久久久91| 国产黄在线观看免费观看不卡| 无套内内射视频网站| 狠狠色噜噜狠狠狠狠2022| 视频一区二区三区免费| 99久久精品国产亚洲| 张津瑜国内精品www在线| 久成人免费精品xxx| 久久天天躁日日躁狠狠躁 | 精品国产成人在线一区二区| 国产午夜亚洲精品国产成人最 | 中文字幕亚洲综合久久综合| 国产成人亚洲欧美一区综合| 中文欧美日韩久久| 又大又紧又粉嫩18p少妇| 亚洲精品久久久久久久久久久| 肥臀浪妇太爽了快点再快点| 久久99精品国产免费观观| 在线欧美精品一区二区三区| 久久人人爽人人爽人人AV| 亚洲韩国日本va精品国产一区| 国产淫语对白说脏话aV| 欧美日韩国产三级| 偷拍一区二区三区| 国产成人啪精品视频免费网页| 国产精品久久久久久久久久蜜臀| 精品人妻毛片久久久久久| 国产成人午夜福利高清在线观看| 国产精品91手机在线观看| 伦理片国产精品久久一国产精品| 农村女人毛片精品久久久| 久久91精品国产91久久小草| 日韩18中文字幕欧美在线| 四虎精品在线播放| 精品噜噜噜噜久久久久久久久| 色猫咪免费人成网站在线观看| 夜色www国产精品资源站| 一女三黑人理论片在线| 一级午夜黄色视频| 国产精品原创不卡在线| 太骚了全程对白Spa69| 国产精品夜间视频香蕉酒店| 国产精品女同一区二区三区| 影音先锋熟女少妇av资源| 欧美综合在线视频| 卧室大战欧美肉丝丝袜| 欧美精品在线观看第一页| 成人免费毛片东京热| 免费久久99精品国产自在现线| 欧美日韩免费高清一区色橹橹 | 96精品伊人久久久大香线蕉| 熟妇人妻无码xxx视频| 丰满少妇高潮惨叫久久久| 91麻豆国产自产在线观看亚洲| 午夜免费观看体验区入口av| 亚洲视频十八禁在线无遮挡| 国产成人免费午夜不卡视频| 亚洲伊人五月丁香激情| 儿子的妻子6免费观看电视剧| 粉嫩小泬18XXXⅩ高潮| 日韩欧美中文字幕激情视频| 亚洲一区二区免费在线观看| 日日操日日射日日摸欧美| 在线观看片免费人成视频播放| 国产高清视频在线观看免费视频| 日韩人妻无码精品系列专区| 亚洲熟妇AV日韩熟妇在线| 99热这里有的只是精品| 久久综合亚洲欧美成人| 欧美亚洲日本一区| 无码+磁力+日本| WWW亚洲色大成网络.COM| エッチなH0930人妻斩| 国产精品久久久久久粉嫩影视| 成人av片手机在线播放| 中文字幕一区二区三区乱码图片| 无码人妻丰满熟妇区毛片18| 9.1入口nba在线观看免费| 久久天天躁狠狠躁夜夜AV| 成年奭片免费观看视频天天看 | 日本精品婷婷久久爽一下| 亚洲综合一区和综合二区| 狠狠色丁香婷婷综合久久图片| 欧美一区二区三区在线视频观看| 97人伦色伦成人免费视频| 久久精品人人做人人爽| 麻豆精品人妻一区二区三区蜜桃| 国产午夜理伦三级好看| 日本高清在线观看视频www | 国产无套白浆视频在线观看| 欧美日韩国产成人综合在线影院| 欧美福利在线视频| 国产日韩欧美一区| 在线国内精品自线视频| 精品乱码国产一区二区三区| 鲁大师影院在线观看| 91九色在线视频| 国产精品国产精品久久久久| 三个熟睡少妇的按摩中文字幕| 熟女内射视频18| 欧美日韩在手机线旡码可下载| 亚洲国产成人久久久网站| 91av福利视频| 亚洲一区二区精品视频在线观看 | 青青草免费在线视频| 强开小婷嫩苞又嫩又紧韩国视频| 色久综合网精品一区二区| 一本色道av久久精品+网站 | 国产在线播放精品视频| 午夜久久久久久久久久一区二区| 久久久这里只有精品10| 国产白嫩护士被弄高潮| 艳妇乳肉豪妇荡乳av无码福利| 成年人免费观看国产精品视频 | 中文字幕在线观看网站| 97视频在线播放| 国产日韩欧美精品| 国产ae86亚洲福利入口| 人妻+种子+磁力链接| 蜜桃精品免费久久久久影院| 在线欧美日韩三级| 91狠狠综合久久久久久| 欧美亚洲日本国产爽快片| 久久国产精品免费| 久久国内精品自在自线图片| 国产午夜福利精品久久2021| 大地资源网在线观看入口| jiZZjiZZjiZZ亚洲熟女| 网友自拍+偷窥+国产| 国产精品户露av在线户外直播 | 亚洲熟妇AV一区二区三区| 午夜福利天堂一区二区在线观看| 久久青青草原国产毛片夜夜亚洲 | 国产黄a大片真人免费视频| 窝窝影院在线播放免费观看电视剧| 2020最新无码片中文字幕| 国产精品久久久久久久永久免费| 成人亚洲xxx在线观看| 亚洲国产欧美在线人成人| 精品国产成人在线一区二区| 欧美在线一二三区| 国产亚洲欧美精品久久久| 久久国产亚洲精品赲碰热| 711公侵犯美丽人妻| 久热这里只有精品99国产6 | 免费a级毛片18以上观看精品| 欧美一区二区最爽乱淫视频免费看| 国产福利视频一区| 日韩人妻少妇一区二区| 亚洲午夜久久久久久久国产| 亚洲高清码在线精品av| 中文字幕+亚洲一区二区三区| av男人天堂最新亚洲天堂| 丰腴饱满的极品熟妇| 亚洲国产欧美在线综合其他| 国产精品嫩草77AV麻酥酥| 日韩欧美成人精品一区二区三区 | 亚洲成av人片天堂网站| 中文字幕在线观看国产精品| 久久久综综合色一本伊人 | 国产精品v欧美精品v日韩精品v| 欧美三级+不卡+在线观看| 在线观看免费人成视频色| 亚洲国产成人精品女| 中文字幕在线视频不卡| 日本无码一区二区三区| 欧美日韩在线观看视频| 国产精品久久久精品三级18禁| 在线视频国产网址你懂的| 日本最新免费二区| 欧美成人中文字幕| 亚洲婷婷综合色高清在线| 九九影院在线观看电视剧| 欧美日韩国产一区二区三区在线 | 日本69精品久久久久999小说| 午夜三级a三级三点在线观看| 国产午夜精品久久久久免| 国产麻豆91精品三级站| 国产欧美va天堂在线观看视频下载 | 国产精品久久久久久不卡盗摄| а√中文在线资源库| 国产高清在线不卡| 亚洲人成网址在线播放 | 亚洲国产手机免费在线观看 | 亚洲精品一区三区三区在线观看 | 97国产欧美人人爽人人做| 亚洲精品av中文字幕在线| 欧美成人看片一区二区尤物| 无遮挡又色又刺激的视频+黄| 老司机成人精品视频在线观看 | 91在线公开视频| 国产+免费+日韩欧美| 国产+精品+喷水| 少妇爆乳无码专区| 国产精品久久久久久四虎| 嗯啊嗯啊在线观看| 拍拍拍产国影院在线观看| 亚洲最新无码成av人| www波多野结衣com| 日韩欧美高清字幕在线观看| 国产91精品久久免費資訊| 国产美女狂喷水潮在线播放| 人妻丰满熟妇av无码区不卡| 漫蛙漫画(网页入口)| 国产91精品久久久久91黄色| 666妺妺窝人体色WWW| 中文字幕一区二区三区夫目前犯| 肉体公尝HD中文字幕| 国色一卡2卡二卡4卡乱码| 天天综合天天做天天综合| 国产精品美女乱子伦高| 久久av+高潮+搞| 少妇激情偷人三级| 久久久久久国产精品美女| 丁香开心五月婷婷精品伊人| BBBBB女女女女BBBB| 最新国产成人av网站| 老熟妇乱子伦牲交视频欧美| 日韩中文字幕av在线| 四虎国产精品成人免费影视| 1024精品久久久久亚洲| 精品人人妻人人爽人人牛牛| 中文字幕在线影视| 2019日韩中文字幕| 国产精品久久久久久影院| 国产在线麻豆在拍91精品| 国产+日产+欧美视频| 日本大片又大又好看的PPT模板视频 | 国产成人精品无缓存在线播放| AV剧情麻豆映画国产在线观看| 波多野结衣绝顶高潮喷水| 国产欧美在线观看不卡| 爆乳熟妇一区二区三区霸乳| 黄页免费视频网站国产一区| 久久天天躁狠狠躁夜夜不卡 | 最日本中文字幕中文翻译歌词 | 久久久久夜色精品国产av| BBBBB女女女女BBBB| 精品+无码+白浆| 欧美在线99香蕉在线视频| 日本黄色视频在线观看一区| 国产免费黄色小视频| 国产女人叫床高潮视频在线观看| 图片小说视频一区二区| 午夜精品乱人伦小说区| 亚洲精品入口一区二区乱麻豆精品 | 欧美日韩国产一区二区三区综合 | 97国产爽爽爽久久久| 久久无码av中文出轨人妻| 日韩精品免费视频| 人人澡人人澡人人看添| 国产成在线观看免费视频密| 免费的污污的网站在线观看| 麻豆精品国产专区在线观看 | 国产日韩欧美系列一区二区| 综合图区亚洲欧美另类图片| 久久免费看少妇高潮v片特黄 | 国产精品久久久久久久成人av| 久久97超碰国产精品超碰| 91嫩草视频在线观看| 亚洲制服丝中文字幕| 不卡一区二区视频日本| 国产一区二区三区撒尿在线| 天堂资源中文最新版在线一区| 无码+羽田桃子+番号| 国产+在线+激情| 免费+精品+在线观看| 欧美高清美女视频一区二区三区| 欧美日韩国产一区二区三区综合| 日韩精品无码免费专区午夜不卡| 久久久久久自慰出白浆| 夜夜嗨av一区二区三区| 久久精品国产亚洲av麻豆尤物| 五十路完熟豊満交尾| 怡红院一区二区三区在线| 中文字幕日本在线| 国产蝌蚪视频在线观看| 欧美精品亚洲日韩aⅴ| 欧美黑人做爰爽爽爽| 亚洲精品aaaaa| 国产精品手机视频| 久久97超碰国产精品超碰| 亚洲Av无码一区二区三区天堂| 日本三级视频在线播放| 欧洲精品视频在线| 国产福利一区二区三区在线视频| 清纯唯美一区二区三区| 亚洲成人一区在线| 《公妇公侵波多野结衣》_| 日韩精品一区在线观看视频 | 国产精品91手机在线观看 | 久久国产精品精品| 国产黄色一区二区| 久久国产露脸老熟女熟69| 亚洲av蜜桃永久无精品| 国产成久久免费精品av片| 亚洲国产精品第一区二区| 丰满少妇被猛烈进入试看| 男女做爽爽爽网站| 白浆+高潮+蜜桃| 国产精品久久久久久影院| 18禁黄网站男男禁片免费观看| 日本欧美亚洲中文在线观看| 国产精品亚洲欧美中文字幕| 又粗又黄又猛又爽大片免费| a在线观看免费网站大全| 美女搡BBB又爽又猛又黄www| 精品国产91久久久久久| 欧美xxxx做受欧美69| 中国少妇裸体bbbbb| 日日摸夜夜添夜夜添欧美毛片小说| 国产av高清怡春院| 午夜视频在线观看1区2区免费 | 中文字字幕在线中文乱码| 一本色道av久久精品+网站| 久久精品aaaaaa羞羞羞| 日韩午夜理论免费tv影院| 久久婷婷五月综合色丁香花 | 无码人妻一区二区三区免费n鬼逝 av岬奈奈美一区二区三区 | 久久+亚洲+日韩| 亚洲精品欧美激情专区在线观看| 亚洲精品国产高清一线久久| 一区二区三区91| 国产精品熟女亚洲av麻豆| 中文有码视频在线免费观看| 亚洲最新无码成av人| 亚洲+国产+激情| 欧美精品一区二区高清在线观看| 国产成人av综合久久视色| 农村乱子伦毛片国产乱| 伊人久久大香线蕉综合影院首页| 狠狠躁夜夜躁人人爽天天开心婷婷| 菠萝菠萝蜜视频免费观看播放| 丁香花在线影院观看在线播放| 野花影院在线观看视频| 97久久精品亚洲中文字幕无码| 在线精品视频一区二区三四| 天堂久久久久va久久久久| 成人孕妇专区做爰高潮| 自偷自拍亚洲综合精品麻豆| 尹人久久久香蕉精品| 久久久91色精品国产一区 | 伸进她的小内裤疯狂揉摸漫画| 黄色av网站免费观看| 亚洲爆乳大丰满无码专区| 国产又粗又长又猛黄色视频| 夜夜爽夜夜叫夜夜高潮漏水| 亚洲国产中文欧美日韩另类| 国产精东天美av影视传媒| 中文字幕乱码视频32| 91精品久久久久亚洲国产| 美女被草+在线观看| 人妻少妇精品一区二区三区| 一卡二卡亚洲视频在线观看| 97青草超碰久久国内精品91| 福利视频中文字幕一区二区| 青草视频在线观看视频| 国产69精品久久久久久尤物 | 成人精品av一区二区三区网站 | 一区二区三区日韩欧美| 全程露脸3p东北老女人| 午夜国产精品入口| 亚洲+少妇+专区| 亚洲人成色在线观看| 国产视频又黄又粗又爽又猛| 日本精品久久久久久| 亚洲精品国产嫩草在线观看免费| 午夜免费福利在线| 最近中文字幕免费mv视频| 久久国产精品久久久久久电车| 成人一区二区三区国产精品| 亚洲丝袜一区二区| 国产成人av亚洲一区二区| 18禁止的网站黄污污| 国精品午夜福利视频不卡| 国产精品成人av在线观看春天| 91精品国产91久久综合| 黄师傅AV一区二区| 久久精品国产只有精品2020| 97视频+国产日韩欧美| 亚洲精品乱码久久久久久花季| 国产无套粉嫩白浆内的人物介绍| 白嫩无码人妻丰满熟妇啪啪区百度| 久久男人高潮av女人天堂| 挺进肉丝熟妇老师的身体视频| 国产又黄又粗无遮挡全黄色视频| 国产精品一区在线观看www | 亚洲+综合+欧美| 任你干在线精品视频网2| 中文字幕乱偷在线小说| 人人躁日日躁狠狠躁av| 大帝av在线一区二区三区| 高清无码成人视频| 国产偷国产偷亚洲清高app| 国内精品国语自产拍在线观看| 国产精品中文字幕一区二区| 日本精品不卡免费在线播放| 91在线精品亚洲一区二区免費資訊 | 噜噜噜噜香蕉私人| 18+成人免费视频| 五月天久久久久久九一站片| 亚州日本乱码一区二区三区| 在线天堂中文最新版资源| 亚洲无线码在线一区观看| 欧美激情伦理一区二区三区| 亚洲精品久久久久久久蜜桃 | 一区二区三天美小说| 免费的污污污网站在线观看| 国产sm鞭打调教女m视频| 精品国产一区二区三区久| 奶头好大狂揉60分钟视频| 久久久久久久国产精品免费| GOGO人体做爰大胆视频| 亚洲欧洲精品专线| 韩国真做片在线观看国产初高中生videos| 亚洲中文十区字幕在线播放| 中文在线字幕观看电视剧17.3 | 18+韩国女主播青草| 国产精品亚洲欧美日韩在线观看| 无码+剧情+动漫| 国产美女自卫慰视频福利App| 久久视频一区二区| 美女黄色私密视频在线观看免费| 国产手机在线视频| 天堂久久av无码亚洲一区小说| 国产精品a国产精品a手机版| 一区二区三区在线播放| 神马久久久久久久久| 久久成人免费精品网站| 亚洲精品成人无码中文毛片不卡 | 台湾av+在线播放| 午夜免费av啪啪噜噜| 一二三四日本中文在线| yy6080亚洲精品一区| 国产亲子乱弄免费视频| 日本欧美国产一区二区在线观看 | 国产午夜精品一区二区三区| 亚洲人成网站在线播放2019| 中文字幕99免费精品视频网| 国产+欧美+日产| 粉嫩小泬无遮挡久久久久久 | a在线观看免费网站大全| 亚洲色大成网站www尤物| 亚洲欧洲国产精品香蕉网| 午夜av一区二区三区| 国产经典一区二区三区| 91精品情国产情侣高潮对白文档| 99久久国产综合精品五月天喷水| 日日AV色欲香天天综合网| 国产美女久久免费视频网站| 国产免费国语一级特黄aa大片 | 亚洲国产最大av| 在线+欧美+国产| 影音先锋+中文+人妻| 日韩国产精品一区二区三区| 久久www免费人成精品高清| 高清无套内精线观看456| 久久久久亚洲精品国产日韩精品| 欧美日韩高清在线| 老牛影视AV牛牛影视av| gogogo高清在线观看+视频| 99精品视频在线观看婷婷| 亚洲国产精品自在拍在线播放蜜臀| 亚洲精品成人区在线观看| 无码h黄肉动漫在线观看网站| 亚洲色成人网站www永久四虎| 亚洲国产天堂视频在线播放| 国内精品久久久久影视| 亚洲欧美日韩综合久久久久久| 婷婷五月开心亚洲中文字幕| 国产精品av久久久久久无| 亚洲人成在线播放网站岛国| av成人在线免费观看| 东京热一精品无码av| 国产1234区2023| 色偷偷人人澡人人添老妇人 | 亚洲成av人片天堂网无码】| 国产又粗又猛又爽又黄4| 黄色国产mv在线免费观看| 久久99国产综合精品免费| 日韩视频网站在线观看| 日韩精品手机在线| 午夜免费福利在线观看| 欧美精品久久一区二区| 妈妈你真棒插曲mv在线观看免费| 欧美三级韩国三级日本播放| …伊人久久婷婷国产综合| 午夜福利人妻专区一区二区| 在线+免费+国产| 国产三级黄色视频| 欧美精品一区二区三区蜜桃臀| 最新在线精品国自产拍福利| 国产92成人精品视频免费| 国产国产午夜精华| 亚欧美黄片免费高清不卡| 国产激情99精品久久一区二区 | 国产精品一区二区色综合| 老牛嫩草一区二区三区消防| 国产精品久久久久久久久久妇女| 日韩国产在线观看不卡免费| 天堂视频在线观看一二三区| 神马久久久久久久久久久 | 中文字幕在线永久视频2018| 窝窝人体色WWW聚色窝欲女吧| 午夜福利黄色小视频| 国产日产高清欧美一区| 国产乱淫av片杨贵妃| 欧美经典影片视频欧美一级网站| 色婷婷精品视频一区二区| 无码+调教+西瓜影音| 亚洲人成未满十八禁网站| www.精品综合久久久久| 中文字幕av网站| 91绿帽黑人系列一区| 国产乱人乱品精一区二区三区| 国产女人18毛片水真多1| 亚洲熟妇AV一区二区三区| 99久久夜色精品国产亚洲| 99国内精品久久久久久久| 亚洲va欧洲va国产va不卡| 亲密+磁力链接+下载| 精品欧美一区二区精品久久 | 免费的污污的网站在线观看| 日本一区二区免费在线观看| 国产男女无遮挡猛进猛出| 国产微拍精品一区| 欧美熟妇丰满xxxxx裸体艺术| 免费+岛国+h动漫| 久久99热这里只有精品国产| luna精品videossex| 精品国产综合区久久久久久小说 | 丰满人妻无奈张开双腿av| jav+中文字幕| 999久久久国产精品视频| 国产精品久久久久久久久久免| 成人做爰A片免费看黄冈宾馆| 黄色精品一区二区三区| 日本久久www成人免| 欧美激情国产一区二区13| 国产精品久久久久AV福利动漫 | 国产真实乱偷精品视频| 日本大香蕉中文在线视频| 日本乱码一区二区三区不卡| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解| 授乳喂奶av中文在线| 国产片淫级awww| 亚洲AV成人片无码| 美丽人妻被按摩中出中文字幕| 中文字幕中文字幕在线网| 中文字幕一区二区在线看www| 亚洲精品国产一区二区三区在线观看| 91久久精品视频| 国产精品69毛片高清亚洲| 91久久久久久久久久久久| 欧美老妇bbwhd| 在线人视频观看免费| 一级A片60分钟免费看| 日本久久高清免费观看| 人妻激情乱人伦视频| 日本一区二区三区黄色片v| 4399午夜理伦免费播放大全| 99热门精品一区二区三区无码| 青青草国产免费国产是公开| 免费+五码+国产| 亚洲精品无码av专区最新| 国产免费一区二区三区视频| 色欲综合久久中文字幕网| 特级婬片A片AAA毛片咕噜咕噜| 免费在线观看视频一区二区| 丰满女人无套内谢| 亚洲永久网址在线观看 | 日本片黄在线观看免费| 国产精品国产三级国av麻豆| 亚洲日韩精品区二区av| 97中文字幕在线观看| 欧美婷婷六月丁香综合区| 人妻在厨房被色诱| 亚洲欲色欲色xxxxx在线| 欧美日韩国产成人综合在线影院| 美女网站免费在线观看日韩| 青青草原亚洲视频| 亚洲欧美另类在线图片区 | 一个人在线观看免费视频www| 无码毛片一区二区| 夜夜嗨av一区二区三区四区| 国产的av在线免费观看| 免费成人在线网站| 国产亚洲曝欧美精品手机在线| 999久久久久久久久6666| 91精品久久久久久久久青青| 亚洲激情在线视频| 免费人成视频x8x8日本| 欧美放荡办公室videos| 手机在线一区二区三区| 在线+欧美+国产| 久久久精品7777777| 国产激情内射在线影院| 午夜激情一区二区| 空姐吹箫完整版mv| 久久久国产免费美女视频| 欧美一区日韩一区| 99精品视频免费版的特色功能| 午夜福利1000欧美在线观看| 国产毛片一区二区三区| 亚洲2017天堂色无码| 儿子的妻子6免费观看电视剧 | 亚洲国产香蕉视频精品一区| 偷自拍亚洲综合在线| 国产欧美一区二区三区午夜精品 | 亚洲+在线+国产| 亚洲精品无码av专区最新| 久久男人av资源网站无码软件 | 国产精品久久久久久久久久吹潮| 国产又粗又猛又爽又黄4| 中文字幕av九五月天| 小12萝裸体自慰出白浆| av在线免费网站| 97国产人成视频免费在线播放| 国产在线麻豆在拍91精品| 欧美一级a视频在线观看免费| 最新国产av最新国产在钱| 成人做爰A片免费看网站网豆传媒| 亚洲欧洲日产国无高清码图片| 99欧美日本一区二区留学生| 午夜福利亚洲专区欧美专区| 亚洲Av永久无码精品尤物| 日本在线观看免费| 亚洲欧美日本在线观看视频| 成人a免费视频中文字幕| 国产伦精品一品二品三品的更新时间| 日韩av爽爽爽久久久久久| 国产成a人亚洲精品在线观看 | 日韩毛片+18+成人网| 中文字幕+欧美+日韩| 日韩+成人+自拍| 精品免费产品日亚韩二区| 樱花影院电视剧免费| 亚洲超清欧美不卡免费在线视频| 国产亚洲视频在线播放香蕉| 亚洲一区天堂九一| 欧美.日韩在线一区二区三区| 色噜噜狠狠一区二| 国产人交视频xxxcom| 国产美女视频免费观看的网站| 亚洲欧洲精品成人久久曰影片| 91精品成人免费国产片| 中文字幕乱码视频32| 亚洲精品乱码久久久久久日本| 国产乱子伦视频一区二区三区| 夜夜躁狠狠躁日日躁2022| 在线中文字幕视频| 992tv成人国产福利在线观看| 日韩精品免费一区二区三区四区| 国产精品久久久久久久无毒| 伊人精品成人久久综合软件| 国产色乱码一区二区三区| 亚洲另类国产精品中文字幕| 小泽玛利亚AⅤ成人片| 免费国产一级特黄久久| 日韩国产精品一区二区三区 | 中文在线观看免费高清电视剧 | 欧美一级免费观看| 亚洲欧洲日韩综合| 7777久久久国产精品消防器材| 国产精品一区二区久久乐夜夜嗨| 欧美成人精品在线播放免费| 午夜福利精品亚洲不卡| 黄色欧美在线观看| 主播大秀一区二区三区| 免费香蕉成视频人网站| 国产精品卡1卡2卡三卡四| 成人+网站+日韩毛片| 欧美激烈精交gif动态图| 77久久人妻视频| 免费大片一级a一级久久三| 国产美女极度色诱视频www| 人妻少妇精品视频一区二区三区| 亚洲国产人成自久久国产| 好吊色国产欧美日韩免费观看 | 一区二区国产精品| 国产精品视频六区| 国产三级精品三级在线专区1| 免费黄色在线网站| 国产老头和老太xxxx视频| 亚洲国产精品自在拍在线播放蜜臀| 日本在线观看免费| 久草热久草热线频97精品| 12萝自慰喷水亚洲网站| av黄色免费观看| 在线看不卡毛片a一区二区| 日韩在线视频播放免费视频完整版| gogogo高清在线播放免费观看如果奔跑是湘 | 色久综合影视天天综合网| 精品午夜福利在线观看| 无码专区亚洲制服丝袜| 日韩欧美一区二区三区五区| 一级A片巜色情荒野| 国产+群p+在线观看| 国内国产精品久久久亚洲w码| 国产av制服二区三区av系列| 国产免费av综合片在线观看| 精品欧美亚洲一区国产高潮| 国产高潮在线观看www | 日本高清色本在线WWW| 日韩欧美中文字幕在线视频| 欧美日韩亚洲视频一区二区三区| 国产精品久久久av免费不卡 | 亚欧美黄片免费高清不卡| 国产成人三级在线视频网站观看| 欲色影视天天一区二区三区色香欲| av黄色免费观看| 欧美日韩亚洲成人| 欧美做爰全过程免费观看| 中国老熟妇在线视频| 久久人妻少妇嫩草av蜜桃漫画| 欧美成人福利视频| 人妻丰满熟妇av无码区app| 秋霞鲁丝片Av无码少妇| 精品国产91久久久久久动漫| 国产在线激情小视频国产馆| 亚洲精品国产福利| va亚洲va天堂va视频在线| 91兰州熟女富婆露脸| 久久国产午夜精品理论片| 日韩+欧美+国产精品| 俺去俺来也www色官网cms| 欧美+国产+制服| 8888888888免费观看在线nba| 在线免费观看美女被靠到高潮| 国产精品女同一区二区久久夜| 日韩欧美精品一区| 免费看又色又爽又黄的国产| 欧美日韩高清在线| 亚洲欧美日韩人成在线播放| 黄色一级大片在线免费看产 | 夜夜国产一区+1080p| 欧美日韩一区二区三区妖精| 国产精品一国产精品一k频道| 国产互换人妻5P| 亚洲v无码一区二区三区四区观看| 日韩欧美中文字幕激情视频| 先锋影音男人av资源| 国产午夜夜伦鲁鲁片| 午夜精品第一区第二区第三区| 在线免费播放av| 日本欧美一区视频在线观看| 亚洲中文成人中文字幕| 国产无套普通话对白| 五十路完熟豊満交尾| 播放日韩美女免费毛片视频| 娇妻被朋友日出白浆| 美丽的小蜜桃《美剧》| 日本高清视频一区| 东京热加勒比久久| 亚洲欧洲日韩综合| 91亚洲成a人片在线观看www| 天堂在线www四虎国产精品| 玩爽少妇人妻系列| 亚洲日韩欧洲乱码av夜夜摸| 亚洲精品中文字幕国产精品| 成人免费视频一区| 国产a视频精品免费观看| 亚洲精品av中文字幕在线在线| 友田真希88AV在线播放| 国产成a人亚洲精品在线观看| 99久久精品国产波多野结衣| 美女高潮穿丝袜久久国产精品 | 欧美日韩国产一区二区三区播放| 天堂在线免费观看视频www| 99精产国品一二三产品香蕉| 欧美日韩一区二区三区| 国产成人av大片在线观看| 成人羞羞视频在线观| 99热国产这里只有精品9| 中文字幕av九五月天| 中文字幕av久久激情亚洲精品| 7799天天综艺在线观看免费下载| 粉嫩一区二区三区四区公司1| a片+影音先锋资源网站| 日韩午夜一区二区在线精品三级伦理| 国产欧美一区二区精品忘忧草| 鲁大师大地影院免费观看视频| 忘忧草www中文在线资源| 99久久有精品国产婷婷外女 | 国产国产成人久久精品| 日本黄色免费视频| 国产亚洲精品a第一页| 国产精品一区二区av片| 成人精品av一区二区三区网站| 亚洲国产精品久久又爽av| 欧美激情伦理一区二区三区| 欧美丰满熟妇乱xxxxx视频| 国产成人精品一区二区在线观看 | 337p粉嫩大胆色噜噜噜噜| 最新国产在线观看中文字幕| 高清国产一区二区| 亚洲AV午夜精品无码专区| 日本一级理论片在线大全| 999在线观看精品免费不卡网站| 俄罗斯A片巜豪妇荡乳| 成人一区二区在线播放| 久久久av高清一区二区| 中文字幕+乱码+中| 欧美成人一区在线| 女同一区二区三区在线观看| 国产一区二区三区免费在线| www成人国产高清内射| 精品一区二区三区自拍图片区| 青柠影院在线观看高清电视剧荣耀| 免费国产又色又爽又黄的网站| 免费观看四虎国产精品午夜| 7777淫语有声小说| 中文字幕+欧美精品+制服丝袜| 免费观看美女裸体网站| 欧美精品在线观看第一页| 精品国产国语对白av优播av| 91在线中文字幕| 最新69国产成人精品视频| 初撮り五十路老女人| 久久婷婷五月综合成人d啪| 国产69精品久久久久久尤物| 久久躁夜夜躁天天躁| 亚洲18在线看污www麻豆| 国产精品六九久久久久不卡| 大地资源中文第二页日本| 日本在线看片免费人成视频| 色婷婷av久久久久久久| ⅹⅹⅹ黄色片视频| 黄色国产mv在线免费观看| 麻豆激情久久av| 黄色网页在线观看| 国产欧美日韩亚洲一区二区 | 一个人看www在线视频| 精品1区2区3区4区产品| 国产乱xxxxx978国语对白| 熟妇人妻无乱码中文字幕真矢织江 | 亚洲第一视频在线播放| 午夜福利不卡在线视频| 国产在线一区二区三区| 狠狠色狠狠人格综合| 久久久噜噜噜久久久精品| 欧美+日产+国产在线观看| 黄色一区二区三区在线观看| 18+韩国美女主播| www.亚洲欧美成人影院| 影音先锋+无码高清| 狠狠色噜噜狠狠狠777米奇小说| 日本xxxxx片免费观看19| 日韩在线观看永久免费视频| 国产亚洲精品福利视频| 久久网美女黄色视频网站 | 丰满大乳班主任趴下让我玩视频| 无码人妻丰满熟妇区网站| 91福利视频在线| 四虎影视永久免费观看在线| 污18禁污色黄网站免费观看| 成人精品gif动图一区| 国产精品久久久久久超碰| 天天爽夜夜爽国产精品视频| 欧美日韩精品人妻三区东京热| 亚洲日韩av一区二区三区四区| 色综合天天综合天天摸天天爽 | 久久精品无码手机观看| 国产人妻人伦AV片三A级做爰| 欧美一级a视频在线观看免费| 一区二区在线视频播放| 亚洲精品国产精品色诱一区| 天天看片+天天av+免费观看| 成人乱人伦视频在线观看| 福利视频中文字幕一区二区| 久久精品国产68国产精品亚洲 | 国产成人综合久久亚洲精品| 国产欧美成人精品www| 不卡+一区二区视频+日本| 国产精品综合在线| 六月丁香婷婷综合| 日本护士被弄高潮视频| 欧美精品v欧洲高清视频在线观看| 日本国产成人国产在线播放| 伊人久久大香线蕉午夜av| 国产成人午夜福利在线观看| 国产激情综合五月久久| 亚洲婷婷五月激情综合APP| 影音先锋+在线+国内| 白浆+高潮+国产| 国产精品日韩欧美亚洲另类 | 欧美两根一起进3p做受视频| 东北粗壮熟女丰满高潮| 男女乱淫免费视频一区二区三区| 国产精品黄色资源免费在线观看| 国产精品久久久久久久久裸体| 老司机免费的精品视频| 久久99国产66精品久久| 久久99国产精品久久99果冻传媒新版本 | 韩国主播av福利一区二区| 中文字幕人妻少妇引诱隔壁| 色噜噜亚洲男人的天堂| 婷婷综合久久一区二区三区武松| 9.1+成人+看片| 精品美女视频在线观看免费| 亚洲欧洲日本国产精品欧洲| 天堂中文在线8最新版地址| 99久久极品少妇深夜福利| 欧美亚洲国产精品久久高清浪潮| 日本一区二区三区视频在线| 一本加勒比hezyo无码专区| 亚洲一区二区图片| 99福利资源久久福利资源| 日本不卡在线观看免费v| 日本精品一卡二卡三卡四卡视| 丰满岳乱妇三级高清| 婷婷色九月综合激情丁香| 高清无套内精线观看456| 高清亚洲中文字幕在线观看| 亚洲欧美动漫卡通另类bt| 国产一区二区三区成人欧美日韩在线观看| 中文日产码2023天美| 国产伦理五月av一区二区| 丰满多毛xXXⅩ精品视频| 日韩一区欧美一区中文字幕| 久久老子午夜精品无码怎么打 | 97精品免费视频| 视频二区精品中文字幕| 国产精品久久久av免费不卡| 精品视频在线观自拍自拍| 嫩草影院ncyy| 亚洲一区二区三区av免费| 亚洲精品少妇影院| 久久亚洲精品中文字幕无男同| 色偷偷人人澡人人添老妇人 | 91精品福利在线观看| 国内精品国产三级国产a久久| 国产一线天粉嫩馒头极品av| 亚洲欧美另类成人综合图片| 久久精品国产亚洲AV免贵 | 试镜床戏(巨肉高h)| 亚洲+国产+日本视频| 久久精品国产v日韩v亚洲| 人人妻人人添人人爽欧美一区| 乌克兰女人大白屁股ass| 国产成人av+在线| 欧洲中文字幕日韩精品成人| 丰满少妇高潮在线观看| 久久国产亚洲精品赲碰热| 在线+成人+日韩毛片| 亚洲伊人久久大香线蕉下载| 亚洲精品午夜无码专区| 欧美黄视频在线观看| 亚洲欧洲日本在线| 国产精品18久久久首页| 精品美女一区二区| 久久97精品久久久久久久不卡| 色八区人妻在线视频免费| 国产精品18久久久久久人| 久久人妻少妇嫩草av| 国产91精品久久久久91黄色| 国产三级不卡在线观看视频| 国产+精品+日韩| 国产精品毛片一区二区在线看舒淇| 日韩精品人成在线播放| 欧美亚洲人成在线观看网站| 亚洲人成未满十八禁网站| 日韩欧美在线观看污视频| 变态孕妇孕交av免费看| 亚洲Av永久无码天堂影院黑人| 老熟妇午夜毛片一区二区三区| 久久久亚洲av男人的天堂| 午夜福利不卡在线视频| 免费日本A片在线看| 亚洲伊人久久大香线蕉综合图片 | 中文字幕亚洲综合久久综合| 337p日本大胆欧久久| 99er热精品视频| 99久久亚洲综合精品成人网| 亚洲+日韩一区二区| 久久人妻这里有精品视频| 国产jjizz一区二区三区老人| 日本高清免费视频www色| 免费av资源网站在线观看| 中文日韩v日本国产| 四虎精品美女国产在线观看| 久久久综合久久久| 少妇高潮7777777丫乄| 亚洲超清丝袜无码网站| 精品人人妻人人澡人人爽牛牛| 精品久久久久久亚洲中文字幕| 77777亚洲午夜久久多人| 最近黄色国产mv在线观看| 朝鲜女人大白屁股ass| 一区二区免费高清观看国产丝瓜| 国产亚洲综合久久系列| 日本一区二区三区四区18| 久久国产免费福利永久| 亚洲AV高清无码| 日本淫片免费啪啪3| 成版人看片app私人影院| 鲁大师影院中文字幕在线看| 国产精品亚洲一区二区三区喷水| 美女主播一区二区不卡视频| 美腿制服丝袜国产亚洲| 黑人外教人妻HD中字| 黄色免费网站在线| 大地资源_高清资源_中文| 亚洲国产av午夜精品一区| 一区二区三区日韩欧美| 欧美国产三级一区二区三区| 西西人体44WWW高清大胆| 久久精品道一区二区三区| 一本久久a久久精品综合夜| 久久中文字幕一区二区三区| 菲儿+激情+影音先锋| 97国产爽爽爽久久久| 精品国无人区一品二品三品的特点| 91亚洲国产成人精品一区二三| 亚洲情a成黄在线观看动| 最近在线更新8中文字幕免费| 欧美一区二区三区大片| 久久人人97超碰caoporen| 48手+真人+无码| 亚洲日韩久热中文字幕| 亚洲国产综合久久一区二区| 2014av天堂无码一区| 国产亚洲欧美专区精品| 熟妇人妻无乱码中文字幕真矢织江| 国产精品视频播放| www日韩avcom| 国产女人18毛片水真多成人如厕| 欧美在线视频免费播放| 隔着超薄丝袜进入上司| 黄色片网站在线播放| 国产色哟哟免费在线观看 | 日韩熟妇中文色在线视频| 国产精品线在线精品| 影音先锋熟女少妇av资源 | 国产精品综合在线| 久久综合88中文字幕| 波多野结衣被躁50分钟| 91亚洲欧美中文精品按摩| 日韩激情免费视频一区二区| 中文字幕一区二区三区夫目前犯| 一区二区视频在线免费观看| 熟妇乱子伦海角社区| 在线观看精品视频| 欧美日本亚洲视频一区二区| 免费大片一级a一级久久三| 国产精成a品人v在线播放| 欧美mv天堂在线免费播放| 亚洲+欧洲+国产一区二区三区| 亚洲欧美日韩人成在线播放| 91中文字幕在线| 免费无码又爽又刺激高潮视频看看老A| 亚洲色欲久久久久综合网| 亚洲制服国产丝袜综合四季av | 黑人强辱丰满的人妻熟女| 久久久久久老熟女国产999| 99精品视频一区在线观看| 亚洲最大一级视频| 小h片免费观看久久久久| 国产又黄无遮挡在线观看| 精品1区2区3区4区产品 | 毛片国产精品完整版| 最日本中文字幕中文翻译歌词| 拍拍拍无挡免费视频| 午夜理论欧美理论片| 国产成人在线一区二区| 国产+传媒+麻豆| 无码人妻丰满熟妇区毛片18| 亚洲中文字幕日产无码成人片| 521av在线视频中文字幕| 精品美女www爽爽爽在线| 丰滿老熟婦HD六十| 300部大龄熟乱视频| 国产黄色片在线播放| 小视频国产在线观看网站| 九九99久久精品在免费线bt| 国产又硬又粗的视频在线观看| 五月天天爽天天狠久久久综合| 在线精品一区二区三区| 亚洲丝袜制服在线观看视频| 中文字幕亚洲乱码1区2区| 1024手机在线看片| 磁力链接+日韩高清无码| 中文字幕在线观看网站| 国产精品国产a级| 91亚洲美女在线视频观看| 亚洲视频制服丝袜在线观看| 大地资源中文第二页日本| 日日大香人伊一本线久| 女人被狂c到高潮视频网站| 日本一卡二卡视频| 日韩精品内射视频免费观看| 国产精品成人一区二区三区| 中文字幕在线日韩欧美在线观看| 久久亚洲精品国产精品紫薇| 国产69精品久久久久久尤物| 亚洲永久免费播放片国产| 老a影视精品无码视频| 白又丰满大肉唇BBW| 四个熟妇搡BBBB搡BBBB| 熟妇全身大保健(对白)| 在线观看一区二区国产欧美 | 最新版天堂中文在线| 免费中文字幕在线观看| 亚洲精品乱码久久久久久| 免费观看成人毛片| 亚洲色中文字幕无码av| 美女视频黄是免费| 18+成人在线观看| 疯狂做爰xxxⅹ高潮潮喷后感染| 成人看黄色s一级大片| 欧美日韩精品成人网视频| 新无码毛片一区二区有码| 国产乱色国产精品免费视频| 综合亚洲综合图区网友自拍| 国产精品国产成人国产三级| 欧美精品少妇videofree720| 久久人妻这里有精品视频| 99国产精品污污污网站免费看| 久久精品国产亚洲av成人婷婷| 93国产精品久久久久久| 天堂网www在线资源网| 午夜福利影院私人爽| 黑人精品一区二区| 亚洲精品国产精品国自产中出| 久久伊人精品视频| 国产精品区一区二区三| 国产老头和老太xxxx视频| 国产亚洲午夜精品一区二区久久| 少妇人妻无码专区毛片| 国产白嫩护士被弄高潮| 婷婷嫩草国产精品一区二区三区| 青青草草青青草久久草| 久久精品视频在线看4| 高潮+国产+免费| 日本+视频+亚洲| 中文字幕制服丝袜第57页| 国产极品白嫩精品| 免费的短视频app大全下载安装| 动漫成年美女h漫网站漫画| 浪货趴ktv桌~H揉多p| ass年轻少妇pic精品| 欧美国产又粗又长又爽视频 | 无码人妻丰满熟妇区毛片樱花视频| 少妇一区二区三区在线视频| 国产精品女同一区二夜夜夜嗨 | 日韩亚AV无码一区二区三区| 18禁国产精品久久久久| 女同学的嫩苞20p| 人妻懂色av粉嫩av浪潮av八戒| 久热99精品视频免费观看免费 | 91狠狠色综合久久久夜色撩人| 巨茎与艳妇麻麻啪啪漫画| 美女黄频视频免费大全久久| 日韩欧美亚洲精品成人福利 | 人妻丰满熟妇av无码| 久久久精品国产精品国产网站| 91精品视频国产| 日韩+欧美+高潮| 中文字幕在线不卡黄色a| 亚洲成人在线播放视频| 91九色在线视频| 《玉女心经之观音坐莲》| 国产精品久久久久久久久潘金莲| 久久婷婷色综合老司机| 日本黄色激情视频| 国产高清在线一区| 99久久极品少妇深夜福利| 午夜福利亚洲专区欧美专区| 欧美成人午夜剧场| 真人床震高潮全部视频免费| 亚洲国产一区二区在线| 欧美精品v国产精品v曰韩品| 欧美三级在线观看视频| 日本高清色本在线WWW| 久久精品国产68国产精品亚洲| 精品国产亚洲一区| 亚洲国产精品suv| 中文字幕免费播放| 日韩人妻无码精品无码中文字幕| 狠狠色噜噜狠狠狠777米奇小说| 9299yy看片婬黄大片软件| 多人玩弄波多野结衣| 夜夜嗨人妻av一区二区三区| 国产精品不卡av| 久久99国产精品久久99软件| 久久久国产精华液999999| 两根茎一起进去好爽a片在线观看 日韩东京热无码免费视频 | 国产乱xxxxx97国语对白| 中国猛少妇色xxxxx| 亚洲免费视频一区二区| 欧美大片免费播放器| 国产精品成人一区二区三区吃奶| 粉嫩av一区二区在线播放免费| 亚洲精品视频一区二区| 《表妺3》伦理hd| 四虎国产精品成人免费入口| 午夜精品久久久久久久久久| 成全在线观看免费完整| 忘忧草www中文在线资源| 正在播放+国产av| 亚洲最大日夜无码中文字幕 | 99在线精品国自产拍不卡| 中文字幕一区二区三区夫目前犯| 精品亚洲永久免费aaaa| 全部免费播放在线毛片| 欧美+中文字幕+国产| 亚洲日韩欧洲乱码av夜夜摸| 瑜伽+无码+thunder| 国产精品久久久天天影视| xfplay+无码| 在线视频国产网址你懂的| 国产精品+女人呻吟+在线观看| 超碰97国产精品人人cao| 亚洲精品国产精品国自产小说 | 69国产成人精品二区| 亚洲午夜精品一区| 欧美激情国产一区二区13| 亚洲第一精品在线免费观看 | 日本高清色本在线WWW| 免费AV在线播放| 中文人妻av久久人妻18| Ts人妖紫苑口爆丝袜| 国产又黄又大又爽| 久久人人爽人人爽人人片dvd| 欧美三级在线高清不卡| 亚洲欧美自拍色综合图| 国产精品破处一区二区三区 | 色网站在线观看视频| 精品不卡一区中文字幕| 国产做a爰片久久毛片a我的朋友| 国产精品zjzjzj在线观看| 五十六十路熟女交尾a片| 天美麻花果冻视频大全英文版| 午夜亚洲国产理论片二级港台二级| 国产黄a大片真人免费视频| 91精品视频一区二区| 精品国产中文一区二区三区| 国模冰莲小泬喷潮337p| 99视频在线精品免费观看6| 国产精品久久久久av熟女老人 | 久久久精品成人免费影院| 久久人国产精品99久久久 | 国产精品综合一区二区三区| 日韩欧美一区二区三区五区 | 亚洲欧美日韩中文久久| 色欲麻豆国产福利精品| 一区二区三区日韩中文字幕欧美| 国产欧美日韩综合精品二区| 欧美.日韩在线一区二区三区| 你懂的欧美一区二区三区| 99久久免费只有精品国产| 亚洲色婷婷久久精品av蜜桃久久| 中文字幕一区二区三区国产| 国产在线观看免费观看99| 亚洲精品一区二区三区香蕉| 毛片久久久久久久| 777久久久风间由美中出| 91精品视频一区二区三区| 国产乱人乱品精一区二区三区| 国产+口爆+绿帽| 在线日本国产成人免费不卡| www久久精品亚洲国产| 1024亚洲男人的天堂久久| 影音先锋+中文+人妻| 40岁成熟女人牲交片| 人妻av天堂一区二区三区| 国产又黄又粗又爽又色的视频| 日本顶级metart裸体全部| 八戒八戒在线www视频中文| 大香蕉精品手机在线观看 | 精品国产乱码久久久久久口爆网站| 欧美日韩激情在线观看免费| 国产成人高清亚洲明星一区| 亚洲成av人片在线观看天堂无| 丁香啪啪中文字幕亚洲人成一区| 久久精品国产亚洲av成人久久| 丰满人妻做爰2理伦片免费看| 一级黄色大片免费观看| 亚洲色成人中文字幕网站| 91亚洲国产成人精品久久久| 亚洲天堂av在线免费观看| 国产亲子乱弄免费视频| 国产国产精品久久久久久久| 亚洲+日韩一区二区| 《金莲淫史》全黄| 欧美日本91精品久久久久| 拍拍拍无挡免费视频| 婷婷五月六月激情综合色中文字幕 | 丰满少妇高潮久久三区| 亚洲av色香蕉一区二区| 337P日本欧洲噜噜噜噜| 黑人一区二区三区| 日本福利视频一区| 中文字幕精品亚洲无线码一区 | 99国产精品污污污网站免费看| 亚洲精品无码不卡久久久久| 婷婷91麻豆精品国产红杏| 国产又爽又黄无遮挡免费视频| 四川少妇BBBBBB爽爽爽欧美| 网站+激情+国产| 欧美精品久久一区二区| poronovideos黑人极品| 日韩精品+巨乳人妻+一区二区| 人妻av中文字幕久久| 日日摸夜夜添夜夜添无码免费视频 | 制服丝袜+国产精品+中文字幕 | 亚洲免费成人av| 强开小嫩苞一区二区三区网站| 91精品久久久蜜桃网站| 0855午夜福利| 日韩一区欧美一区中文字幕| 国产熟女毛多水大高潮| 精品一区二区三人妻视频| 色阁精品香蕉一区二区| 超薄丝袜足j好爽在线观看| 人妻熟妇女的欲乱系列| 一二三四日本中文在线| 久久久国产一区二区三区四区小说| 亚洲一区在线观看精品女同| 色八区人妻在线视频免费| 玩弄少妇高潮喷水在线观看 | 中国少妇无码专区| 久久精品青草社区| 午夜av一区二区三区| 天堂网www在线资源最新版| 2018av无码视频在线播放| 一本大道道久久综合av| 久久久青青久久国产精品| 亚洲寝取熟女av一区二区三区| 欧美国产又粗又长又爽视频| 亚洲色图日韩伦理国产精品| 出差+无码+thunder| 免费+国产+白浆| 91天堂一区二区在线播放| 国产精品综合第56页| 男人+高清无码+一区二区| 一级做a爰片久久毛片高清流畅| 成人影视在线看18| 日韩在线观看视频精品资源| 中文字幕av网页观看日韩| 99精品久久久久久琪琪| 日韩精品中文在线观看一区| 人妻丰满熟av无码区HD | 中文字幕+乱码+在线观看| 成年人在线观看视频| 半夜摸妺妺的奶摸到高影院| 男人的ji8怼进骚妇B里| 国产精品久久久久久影院 | 国产精品一区二区久久精品| 看全黄色大色女爽一次免费久久| 91日本人妻精品一区二区| 最新国产精品高清在线观看| 免费+精品+国产网站| 激情五月婷婷久久| 尤物网站视频免费看| 久久九九51精品国产免费看| 97午夜理论片在线影院| 久久精品国产只有精品2020| 国产明星精品一区二区刘亦菲| 美女诱惑一区二区| 精精国产xxxx视频在线野外| 狠狠色噜噜狼狼狼色综合久| 日韩三级片在线播放| 国产亚洲Av人片在线观看| 丁香开心五月婷婷精品伊人| 欧美精品久久久久久久久| 午夜福利影院私人爽| 999在线观看精品免费不卡网站| 欧美+国产+韩国| 粉嫩99精品99久久久久久桃色| 手机在线看片1024| 亚洲国产中文一区二区99re| 欧美一级三级完全免费观看 | 久久精品国产亚洲av高清色| 亚洲国产婷婷香蕉久久久久久| 粗暴蹂躏av一区二区| 久久亚洲欧美日韩精品专区| 人妻熟女一区二区av| 亚洲桃色在线播放国产精品| 久久人妻这里有精品视频| 国产乱女淫av麻豆国产| 丰满少妇高潮久久三区| 国产免费福利在线视频| 亚αv无码久久久久久不卡网站| 人妻懂色av粉嫩av浪潮av八戒| 国产成av人片久青草影院| 九九热这里的都是精品| 亚洲欧美日韩国产综合一区二区| 亚洲老熟女av一区二区| 亚洲国产欧美日韩在线人成| 亚洲三区在线观看无套内射| 97人妻成年人视频公开| 国产成人午夜片在线观看高清观看| 大战熟女丰满人妻AV| 久青草国产在线视频_久青草免| 青青草无码伊人久久| 国产jjizz一区二区三区老人| 国产中文在线三级不卡| 亚洲AV综合在线| 久久亚洲日韩看片无码| 国语自产拍无码精品视频| 99久久精品免费国产亚洲| 中文字幕乱偷无码av先锋蜜桃| 国产欧美日韩一区二区三区在线| 国产欧美拍视频免费在线观看| 国产免费拔擦拔擦8x高清在线人 | 久久精品av一区二区三| 西西444WWW无码视频男男| 久久久精品一区二区三区| 国产美女视频一区二区三区| 免费在线观看一区| 日韩专区亚洲综合在线观看免费完整版 | 亚洲一区福利视频| 中文字幕乱码av一区二区三区| 午夜免费福利视频| 日韩毛片+18+成人网| 亚洲欧美日韩中文字幕一区二区| 亚洲aⅴ综合色区无码一区| 多乙亚洲国产中文综合| 午夜精品久久99蜜桃的功能介绍| 欧美激欧美啪啪片免费看| 欧美一区午夜精品久久福利| 99香蕉国产精品偷在线观看| 天堂а√中文最新版在线| 中文字幕丰满乱子无码视频| 最新版天堂资源中文在线| 国产一级久久久久久大片| 色噜噜狠狠狠狠色综合久不 | 中文在线字幕免费观看电视剧日剧| 麻花传媒mv一二三区别在哪里看 | 亚洲+欧洲+国产中文字幕| 狠狠色噜噜狠狠狠狠五月婷| 亚洲s码欧洲m吗国产精品| 精品视频在线观看一区二区| 久久中文字幕一区二区三区| 成人国产av一区二区三区 | 国内少妇高潮嗷嗷叫在线播放 | 国内精品麻豆美女在线播放视频| 色综合视频一区二区三区44| 国产+高潮+在线观看| 13~14女人毛片视频| 久久一级黄色大片免费观看| 天天鲁一鲁摸一摸爽一爽| 亚洲精品欧美黄片在线免费看| 麻豆果冻传媒2021精品传媒一区下载 | 97se亚洲精品一区二区| 少妇太爽了在线观看视频| 在办公室被c到高潮动态图 | 日韩a∨精品日韩在线观看| 日韩+成人+自拍| 日本免费一区二区三区最新| 国产精品+日韩精品+在线播放| 亚洲大尺度无码无码专区| 久久人人爽亚洲精品天堂| 久久久久无码精品亚洲日韩| 成人免费在线观看h视频| 成人国产一区二区三区精品不卡| 欧美老妇胖老太xxxxx| 国产伦精一品二品三品app| 国产对白叫床清晰在线播放图片 | 亚洲AV综合A色AV中文| 国产探花视频在线观看网址| 亚洲一区二区三区欧美| hitomi一区二区三区精品| 亚洲人成77777在线播放网站不卡| 男女做www免费高清视频网站| 国产精品国产三级国产专播精品人| assfree疯狂老妇熟女| 男女一边摸一边做爽视频| 怡红院亚洲综合欧美久久久| 日本无卡无吗二区三区入口| 人妻中文字幕一区三区5| 成人免费观看cn| 青草久久久国产线免观| 妇女嫩BBB揉BBBBBB搡| 99re6热在线精品视频播放| 成人在线观看一区| 在线观看AV黄网站永久| 78成人天堂久久成人| 伊人精品成人久久综合| 日韩不卡高清视频| 国产精品国产av国产三级| 国产视频一区二区在线免费观看| 国产目拍亚洲精品一区二区| 老司机在线精品视频网站| 吸舌添泬的A片视频| 丈夫上司部长与妻子的相处之道 | 老色鬼久久亚洲av综合1| 亚洲+精品+手机| 亚洲国产人成自精在线尤物| 久久久橹橹橹久久久久手机版| 国产女生高潮视频免费网站| 五月天激情久久久| 日韩精品无码一区二区三区免费| www.精品综合久久久久| 夜夜嗨av一区二区三区四季av | 欧美日韩国产一区二区三区综合| 9299yy看片婬黄大片软件| 中文字幕无码免费久久| 免费+精品+在线看| 《漂亮的女邻居5》hd| 亚洲精品国产福利| 亚洲永久精品国产xxxx| 日韩人妻无码一区二区三区| 久热这里只有精品99国产6 | 精品中文字幕在线观看| 亚婷婷洲av久久蜜臀小说| 91亚洲乱码卡一卡二卡新区豆| 国产网红美女自拍小视频网址| 69国产成人精品二区| 国产在线视频不卡一二| 国产成人亚洲日韩欧美久久| 午夜免费av啪啪噜噜| 国产精品亚洲а∨天堂2021| 真实乱偷全部视频| 欧美+视频+中文字幕| aⅴ网站在线观看| 少妇av一区二区三区无码| 精品久久久久久777米琪桃花| 国产精品妇女久久久久久| 亚洲免费在线观看视频一区 | 99久久免费精品国产72精品九九 | 日本无乱码高清在线观看| 国产亲子乱弄免费视频| 国产成人高清免费在线观看| 国产精品99久久久久久董美香 | 亚洲国产成人av| 黑人搡BBBBB搡BBBBB| 最近更新中文字幕2019视频| 朝鲜女人大白屁股ass| 亚洲一区国产一区| 国产实拍会所女技师在线观看| 一本到综在合线伊人| 日韩精品久久久久久久的张开腿让| 亚洲va久久久噜噜噜熟女软件| 国产精品久久久久久久无毒| 91Porn人妻第一页| 一级一级特黄女人精品毛片| 亚洲免费网站观看视频| 国内女人喷潮完整视频| 亚洲精品成人久久av| 91porny首页入口| 日韩国产欧美综合| 永久免费无码日韩视频| 忘忧草社区www资源在线| 粉嫩一区二区三区四区公司1| 天天躁日日躁aaaxxⅹ| 亚洲国产综合av| 国产日韩欧美一区| 精品亚洲一区二区三区在线观看| xxx日本一区二区免费| 精品精品国产自在97香蕉| 伊人久久大香线蕉综合av| 人妻av一区二区三区精品 | av在线播放免费观看| 日本日本乱码伦专区| 美女18禁一区二区三区视频| 粉嫩一区二区三区四区公司1| 欧美日本一区二区三区免费| 国产午夜福利在线观看红一片| 一二三四日本中文在线| 无码+磁力+日本| 最近最新在线中文字幕mv免费| 国产+欧美+亚洲视频| 国产精品午夜久久小视频 | 毛片毛片毛片毛片| 国产精品久久久久久三级| 欧美久久成人一区999| 日本欧美久久久免费播放网| 98在线视频噜噜噜国产| 国精品产品区三区| 亚αv无码久久久久久不卡网站| 在线人视频观看免费| 亚洲精品aaaaa| 国产国产成人久久精品| 污黄啪啪网18以下勿进免费的| 麻花星空天美mv免费观看电视剧 | 国产精品尤物铁牛tv| 久久久久亚洲精品国产日韩精品| 神宫寺奈中文无码字幕| 久久丫精品国产亚洲AV| 欧美日一区二区三区| 国产后入清纯学生妹| 精品国产自在精品国产浪潮| 国产毛片一区二区三区| 粉嫩小泬无遮挡久久久久久 | 91精品久久久久久久久青青| 亚洲国产精品一区二区久久阿宾| 精品欧美一区二区精品久久| 黄色视频国产免费观看| 东北高大丰满BBBBzBBB| 人妻少妇无码精品专区| 国产精品主播一区二区三区| 国产精品亚洲一区二区三区喷水| 人与嘼一区二区三区免费| 熟女老阿8888AV| 精品999久久久久久中文字幕| 久久99国产精品尤物| 自偷自拍亚洲综合精品麻豆| 在线天堂中文最新版www| 国产三级片在线视频观看| 国产+高潮+在线观看| 国产精品偷伦费观看一次| 自慰系列无码专区| 爆乳亚洲一区二区'| 国产精品好好热av在线观看| 亚洲风情亚aⅴ在线发布| 水牛影视一区二区三区久| 日本三级在线视频| 国产精品九九九久久综合| 亚洲第一狼人天堂久久| 国产精品久久免费观看spa| 黄色一级视频在线观看| 中文字幕+人妻+少妇| 精品视频一区二区三区| 亚洲午夜影院在线观看视频| 人妻仑乱少妇a级毛片| 蜜桃视频+波多野| 国产内射一区二区xxx| 无码av无码天堂资源网影音先锋| 窝窝影院在线播放免费观看电视剧 | 视频一区二区三区免费| y111111111免费观看电视| 欧美日韩视频在线观看免费| 乱子伦国产对白在线播放| 亚洲精品无码专区久久久| 青青青国产手机在线观看 | 国产91精品久久久久91黄色| 国产精品爽爽久久久久久豆腐 | 99国产精品久久久久老师| 这里只有精品国产| 国产+人人+视频| 日本精品中文字幕在线播放| 亚洲熟女少妇精品| 羞羞视频在线观看免费 | 成人做爰a片免费看网站找不到了| 青草伊人婷婷精品视频在线观看 | 日韩欧美一区二区三区四区 | 粉嫩小泬无遮挡久久久久久| 日本极品少妇一区二区在线观看| 日韩精品网站在线观看| av无码精品一区二区三区三级| 中文字幕99免费精品视频网| 狠狠色丁香婷婷综合久久图片| 99久久免费只有精品国产| 色视频高清精品一区二区| 国产精品久久一区二区三区动| 免费全部高h视频无码软件| 国产淫伦久久久久久久kkk| 女同av女同一区二区三区| 久久久久久久久久久av| 亚洲精品午夜无码专区| 一区二区三区91| 伊人久久精品无码麻豆一区| 911爆料在线吃瓜911资源 | 亚洲欧美制服另类国产二区| 国产精品一卡2卡三卡4卡| 最近高清日本免费| 久久99国产精品久久99果冻传媒新版本| 女女女女女裸体开bbb| 日本中文字幕+在线播放| 色欲天天网站欧美成人福利网| 欧美日韩亚洲精品一区| 中日韩国产高清在线观看| 三年成全免费观看影视大全| 日韩美女免费线视频| 国产成人精品久久久| 亚洲噜噜狠狠网址蜜桃av9 | 麻豆激情久久av| 日本高清在线www3344| 日本欧美国产在线视频一区| 免费大片av手机看片高清| 一区二区不卡av免费观看| 欧美成人看片一区二三区图文| 亚洲成人在线播放视频| 欧美日本韩国区一区二视频| 国产午夜18久久久久久白浆| 在线国内精品自线视频| 最近2019年中文字幕视频| 欧美精品午夜一区二区三区| 久久婷婷五月综合色99啪ak| 国产av深夜精品福利专区| 操老女人一区二区三区视频tv| 欧美成人+www+一区二区| 99热99这里只有精品| 午夜福利理论片高清在线观看| 国产日产成人免费视频在线观看| 星空传媒天美传媒有限公司| 国产精品综合一区二区三区| 亚洲午夜福利精彩视频在线观看| 亚洲+精品+无码视频| 国产成本人视频在线观看| 亚洲精品国产av日韩精品| 欧美激情一区二区视频| 97人人爽人人澡人人精品| 免费看国产一级特黄aa友片| 在线亚洲专区高清中文字幕| 国产国语露脸激情在线看| 久久久精品国产sm调教网站| 亚洲色成人网站www永久四虎| 亚洲一区久久精品东京热| 日本高清av+迅雷| 国产成人精品无缓存在线播放| 伊人成人开心婷婷久久网| 国产精品理论片在线播放| 97精品人妻一区二区视频| 狠狠cao日日穞夜夜穞av| 免费久久99精品国产自在现线 | 18+韩国美女主播| 国产精品欧美精品日韩专区一乛方| 精品无人区麻豆乱码1区2区| 丰满多毛xXXⅩ精品视频| 明星乱淫免费视频欧美| 日本少妇又色又爽又高潮看你 | 国产精品夜夜爽7777777| 国产精品99久久免费观看| 涩涩涩蜜桃日韩一区二区| 9l国产精品久久久尤物av| 日韩中文字幕在线观看视频| 秋霞无码久久一区二区| 国产综合在线观看免费视频| 国产三级在线三级久操欧美| 日日碰狠狠添天天爽五月婷| 久久精品色婷婷国产网站| 西西人体大胆ww4444图片| 国产精品一区波多野结衣| 国产又粗又猛又爽又黄的视频p站| 你懂的网址亚洲精品在线观看| 国产亲子乱a片免费视频| 在线精品一区二区三区| 深夜激情18禁亚洲蜜臀av| 亚洲精品午夜无码成人| 国产人久久人人人人爽| 精品国产不卡在线观看免费 | 欧美做爰全过程免费观看| 国产精品久久久久久妇女+八| 国产精品久久久久久久久久妇女| 天堂日韩人妻一区二区三区| 国产精品理论片在线播放| B老骚B老熟B老太中国老骚B| 欧美人与动牲交xxxxbbbb| 国产+欧美+日本在线观看| 久久精品亚洲精品无码金尊| 久久久青草婷婷精品综合日韩| 国产又色又爽又黄又免费文章| 天天天天做夜夜夜做| 无码AV最新无码AV专区| 国产精品美女www爽爽爽爽| www.国产一区二区三区av| 17c.com喷水少妇| 丰滿老熟婦HD六十| 欧美日韩国产免费观看一区二区| 久久久久蜜桃精品成人片| 亚洲精品国产一区二区三区在线观看| 国产欧美一区二区精品久久久| 一区二区三区四区欧美极品| 亚洲精品在看在线观看高清| 成人精品一区二区户外勾搭野战| 少妇无码av无码去区钱| 国产99对白在线播放| 97caoporn国产免费人人| 四虎永久在线精品免费网站| 国产精品久久久久久超碰| 又色又爽又黄的视频网站| 国产精品毛片一区二区在线看舒淇| 又粗又黄国产视频.com| 免费ā片在线观看| 中文字幕少妇欧美高潮迭起 | 久久久久人妻一区二区三区VR| 国产日产高清欧美一区| 草莓APP黄污下载| 午夜影院亚洲大码免费| 精品国产成人a区在线观看| 国产成人综合久久精品推 | 黄色片网站在线观看| 国产亚洲曝欧美精品手机在线| 白丝爆浆18禁一区二区三区| 久久精品苍井空精品久久| 视频精品一区二区| www九九热com| 国产哺乳奶水91在线播放| 色又黄又爽18禁免费网站现观看 | 精品国产乱码久久久久久88av| 精品久久久噜噜噜久久| a亚洲va欧美va国产综合| 波多野结衣一区二区三区av高清| 亚洲精品日韩一区二区小说| 真人床震高潮全部视频免费| 已满十八岁免费观看电视剧软件下载| 丰满的熟妇岳中文字幕| 狠狠躁夜夜躁人人爽天天开心婷婷| 亚洲第一视频在线播放| 久久国语精品三级亚洲一二| 亚洲精品久久久久久| 国产激情久久久久熟女老人| 丰满人妻熟妇乱又伦精品劲| 九九精品在线观看| av无码av天天av天天爽仙踪林| 国产精品美女www爽爽爽爽| 久久亚洲精品国产精品紫薇| 日韩国产精品视频| 91成人在线免费观看| 少妇av一区二区三区无码| 国产福利资源在线| 三年片在线观看高清完整版 | 翁含着我的奶边摸边做小视频| 在线观看+中文字幕| 日本一区二区三区黄色片v | 韩漫免费漫画在线观看方法| 亚洲综合视频在线看一区二区三区 | 66国产在线一区二区三区| 天天操天天舔天天干| 国产精品熟女高潮精品| 国产寡妇精品久久久久久| 日日摸夜夜添夜夜添无码免费视频 | 国产精品国产三级国产有见不卡 | 东方aⅴ免费观看久久av| www91免费视频| 国产熟女毛多水大高潮| 97午夜理论片影院在线播放| 婷婷精品久久久久久久久久不卡| 国产欧美日韩一区二区刘玥| 色一情一乱一乱一区免费网站| 亚洲一区二区三区国产| 91蜜桃传媒精品久久久一区二区| 西西人体大胆ww4444图片| 国产欧美一区二区三区免| 亚洲成a∨人片在线观看不卡| 亚洲成a人蜜臀av在线播放| 人妻仑乱少妇a级毛片| 奇米第四声中文字幕| 国产精品青草久久福利不卡| 国产三级在线免费观看| 国产第一页浮力影院草草| 妺妺窝人体色WWW聚色窝孕妇| 久久天天躁狠狠躁夜夜AV| 美女高清久久久久久小视频| 在办公室被c到呻吟的动态图| 最新高清中文字幕免费mv| 综合色区无码一区| 欧美精品v国产精品v曰韩品| 国产精品一区二区久久乐夜夜嗨 | 国产成人亚洲欧美一区综合| 91无人区乱码卡一卡二卡| 武则天被狂躁C到高潮| 久久人国产精品99久久久 | 99久久精品国产一区二区三区| 久久香蕉国产线熟妇人妻| 成全视频在线观看完整动画片| 久久婷婷五月综合色99啪ak| 日韩免费一区二区三区| 国产菊眼屁股交3| 丁香六月婷婷激情免费视频| 欧美日韩妖精视频| 亚洲热久久国产经典视频| 一级黄片亚洲一区二区三区| 天天天欲色欲色www免费| 国产亚洲综合一区柠檬导航| 国产又粗又猛又爽又黄的a视频| 中出あ人妻熟女中文字幕| 肉欲+中文字幕+迅雷| 97国产人成视频免费在线播放 | 国产高清a视频在线观看| 蜜臀av无码一区二区三区| 91精品一区二区中文字幕| 精品欧美高清视频在线观看| 国产视频又黄又粗又爽又猛| 久久精品国产亚洲av高清蜜臀| 冢本六十路の高齢熟女| 久久久久久九九99精品| 国产成人成爽一区二区| 不卡一区二区在线视频观看| 在线观看一区二区三区四区| 朋友的妻子+先锋影音| 秋霞无码久久一区二区 | 亚洲综合色自拍一区| 日韩国产有码精品一区二在线 | 亚洲人成色在线观看| 国产精品久久久久久久免费绯色 | 精品久久久久久久无码人妻热| 校园春色亚洲色图| 国产精品视频麻豆| 欧美肥屁videossex精品| 国产在线国偷精品产拍| 国产一区不卡视频在线播放| 欧洲视频免费网站在线播放 | 中文字幕亚洲图片| 无码囯产精品一区二区免费| 人人爽久久涩噜噜噜av| 亚洲成人精品视频| sm+另类+在线视频| av在线免费网站| 洗濯屋+无码+迅雷| 久久成人免费精品网站| 一级香蕉视频在线观看| 国产99久久久国产精品潘金| 特级西西444WWS高清视频| 日本免码va在线看免费| 三年片在线观看高清完整版| 91丨九色丨蝌蚪丰满| 国产在线+123| 亚洲一卡二卡三卡四卡在线看| 亚洲一区久久精品东京热| 思思青青人人草热视频| 无码AV波多野结衣久久| 国产在线jyzzjyzz免费护士| 久久精品中文字幕一区二区三区| 亚洲欧美精品中文一区二区三| 中文字幕综合在线分类| 一区二区三区国产日韩欧美在线| 久久精品国产亚洲AV免贵| 欧美视频在线观看免费www| 欧美国产成人免费观看| 日韩高清亚洲日韩精品一区二区| 麻豆国产成人av高清在线观看| 色欲色欲久久综合网| 青青青国产精品一区二区| 国产精品刘玥久久一区| 84pao国产成视频永久免费| 日本熟妇50乱偷交尾| 97免费公开视频| 情人伊人久久综合亚洲| 真实新婚偷拍Chinese| 久久精品无码精品免费专区| 成人羞羞视频在线观| 人妻熟妇女的欲乱系列| 国产精品美女久久久久久av爽| 最近高清日本免费| 中文字幕日韩三级| 久久精品欧美一区二区| 精品欧美一区二区精品久久| 日韩久久久久久久久久久 | 成人+国产+欧美| 久久精品国产99国产精2021| 国产欧美日韩综合在线成 | 色噜噜狠狠一区二| 久久久亚洲欧洲日产av| 国产18高清视频在线观看| 成片在线看一区二区草莓| 国产亚洲综合欧美一区二区| 国产精品午夜自在在线精品| 伊人色综合久久天天网| 精品国产乱码久久久久久口爆网站| 国产精品鲁丝av一区二区| 国产精品亚洲综合色拍| 欧美大片免费播放器| 国产极品美女高潮抽搐免费网站| 成人羞羞视频在线观| 亚洲中文字幕精品久久久久久动漫| 福利在线视频导航| 西西人体大胆无码视频| 能免费在线观看av的网站| 酒吧+天海翼+影音先锋 | 免费全部高h视频无码软件| 亚洲麻豆91传媒| 久久久精品2019免费观看| 浙江妇搡BBBB搡BBBB| 在线看人妻视频中文字幕| 亚洲国产日韩精品二三四区竹菊 | 丁香花高清在线完整版| 91国偷自产中文字幕久久| 亚洲中文字幕无码永久免弗| 午夜福利天堂一区二区在线观看| 日本+超碰+专区| www九色com| 中文人妻av久久人妻18| 国产精品国产精品国产专区蜜臀ah | 最好看的2019中文大全在线观看 | 国产欧美一区二区精品忘忧草| 欧美一区二区影院| 欧美大片ppt免费2023| 亚洲精品第一国产综合麻豆| 国产高清狼人香蕉在线| 久久久久国产精品亚洲欧美| 国产又黄无遮挡在线观看| 国产少女免费观看高清电视剧大全可| 国产精品视频全国免费观看| 国产av大陆精品一区二区三区| 97久久综合区小说区图片区| 精品美女视频在线观看免费| 明星被黑人无套内谢| 八戒青柠影院观看免费高清电视剧| 怡春院国产精品视频| 综合亚洲伊人午夜网| 孕妇丨91丨九色| 国产超碰人人做人人爽av大片| 一区二区三区在线欧洲污| 91久久久久久亚洲精品蜜桃| 校园春色亚洲色图| 精品欧美无人区乱码毛片| 成人做爰黄A片免费看陈冠希| 人人爽人人奭人人片AV| 国产+欧美+日本| 78色淫网站女女免费| 在线观看免费www| 动漫+有码+在线视频| 日本天天日天天干| 2021中文字幕| 国产精品a国产精品a手机版| 鲁大师影视在线观看高清免费 | 国产又黄又爽又大免费视频| 日本不卡在线观看免费v| 日韩精品一区国产偷窥在线| 好男人社区www在线视频| 手机av在线免费| 69国产成人精品二区| 亚洲免费观看在线美女视频| 色婷婷亚洲婷婷7月| 成人精品一区二区三区中文字幕| 亚洲精品www久久久久久软件| 91毛片在线观看| 色婷婷亚洲婷婷7月| 成人在线观看www| 麻豆精品国产熟妇aⅴ一区| 最新版天堂资源中文在线| 深夜福利小视频在线观看| 亚洲精品国产自在现线最新| 精品久久久久久中文无码| 国产区图片区小说区亚洲区| 秋霞鲁丝片Av无码少妇| 亚洲国产精品+嫩草影院+久久| 人妻丰满熟av无码区HD| 国内自拍av手机在线免费观看| 亚洲l码和欧洲m码的区别| 夜噜噜久久国产欧美日韩精品| 国产极品美女高潮无套久久| 亚洲国产欧美日韩在线人成| 欧美超猛烈一区二区三区| 91久久久久久国产精品| 久久天天躁夜夜躁狠狠85台湾 | 欧洲亚洲日本国产一区二区| av最大免费网站在线观看| 日韩第一页视频在线观看| 国产又粗又爽又猛又大的动漫片 | 99久久99久久精品国产片| 最新在线精品国自产拍视频| 精品久久久久久中文墓无码| 爆黑正能量料最新| 日韩精品+一区二区+av在线| 制服师生中文字幕一区二区| 亚洲熟妇成人精品一区| 2020狠狠狠狠久久免费观看| 少妇大胆瓣开下部自慰| 国产欧美在线观看不卡| 中文字幕中文字幕在线网| 免费成人午夜福利在线观看| 欧美美女免费国产一区二区| 国产综合一区在线观看97| 亚洲成aⅴ人在线视频| 久久精品国产亚洲AV免贵| 明星被黑人无套内谢| 婷婷成人综合一区二区三区| 一区二区在线免费视频| 亚洲欧洲日韩综合| 乳欲人妻1~5集动漫无删减| 特级西西444www大胆免费看| 91久久久久久国内免费视频| 人人妻人人澡人人爽欧美一区双| 一区二区三区四区亚洲| 大桥未久+高清无码| 国产+激情+喷水| 窝窝午夜色视频国产精品破| 精品久久久久久中文字幕大豆网| 成人免费看黄网站在线观看| 中文字幕+乱码+中文字幕无忧| 小黄鸭+av导航+在线| 久久人人爽人人爽人人AV| 男女吻胸做爰摸下身| 国产91勾搭技师精品| 国产一区二区三区无修精品视频| 欧美日韩国产专区一区二区| 国产精品伦一区二区三级视频永妇| 成品片a免费入口麻豆| 西西人体44WWW高清大胆| 婷婷激情五月天综合丁香社区| 亚洲成a人v在线蜜臀| 国产精品欧美二区66| www国产精品视频看看| 久久受www免费人成| 美女黄网站人色视频免费国产| www.久久美女视频网| 亚洲欧美在线视频观看| 免费国产黄网站在线观看| 91啦丨九色丨刺激中文| 国产日产韩国精品视频| 免费在线观看亚洲| 亚洲欧美另类激情| 久久成人免费精品网站| 国产边打电话边做对白刺激| 女人18片毛片90分钟| 国产免费又大又黄又粗在线观看| 最新国产福利在线观看精品| 亚洲精品久久久久一区二区三区| 美女黄色视频网站在线观看| 免费看成人aa片无码视频| 久久久激情一区二区三区| 中文字字幕永久在线观看| 97久久久亚洲综合久久88| av无码av天天av天天爽仙踪林| 欧美亚洲国产日韩一区二区| 再深点灬舒服灬太大了快点91 | 国产+免费+高清| 亚洲麻豆91传媒| 久久精品国产亚洲精品| 嫩BBB槡BBBB槡BBBB免费视频| 久久精品日产第一区二区三区在哪里| 高潮+白浆+国产| 日韩在线看片免费人成视频播放| 99精品偷拍在线中文字幕| 日韩精品视频在线观看三区| 亚洲精品国产精华液| 91福利院一区二区三区| 日韩精品久久久久久久的张开腿让| 国产成人午夜福利院| 久久久精品午夜国产免费| 非洲黑妞xxxxhd精品| 国产又粗又猛又爽又黄视频| 台湾亚洲精品一区二区tv| www国产精品视频看看| 六十路の完熟丰满无码| 久久精品国产只有精品2020| 久久久www成人免费精品| 真人抽搐一进一出视频| 少妇人妻偷人精品视频免费| 中文字幕人妻丝袜成熟九色| 四虎影视无码永久免费| 久久综合久久自在自线精品自 | 99久久国产自偷自偷免费一区 | 丰满少妇被猛烈进入试看| 特级精品一α级毛片视频| 色视频网站一区二区三区| 一个人免费视频www在线观看| 青青色国产手机在线观看| www.91自拍| 一区二区不卡免费视频| 国产美女精品自在线拍免费下载出| 国产精品伦视频看免费三| 日本高清乱理伦片中文字幕| 天堂а√中文在线| 国产精品亚洲А∨天堂2020| 亚洲成人日韩高清在线观看| 亚洲+日韩+欧美在线观看| 少妇人妻偷人精品视蜜桃| 国产日韩欧美手机在线视频| 午夜dy888理论久久| 在线观看高清国产色视频| 亚洲+熟女+丝袜| 亚洲精品国产精华液| 国产高潮女主播视频一区 | 国产v视频在线亚洲视频| 色噜噜人妻丝袜av先锋影音先| 亚洲色成人网站www永久尤物 | 成人精品视频中文字幕版| 亚洲午夜久久久精品影院| 欧美久久成人一区999| www.4虎影院| 国产小呦泬泬99精品| 国产亚洲五月天综合91| 窝窝看看国产精品| 99久久精品无码一区二区三区 | 亚洲熟妇av一区二区三区宅男| 国产美女直播亚洲一区久久| 国产粉嫩呻吟一区二区三区| 亚洲Av乱熟妇A片大全| 双乳奶水饱满少妇视频| 亚洲精品国产精品国自产网站| 大战丰满大白屁股女人| 亚洲国产精品一区二区三区| 国产又黄又爽又粗又猛的网站| 最新国产成人av网站| 亚洲欧美丝袜精品久久中文字幕| 久久久久久九九99精品| 蜜乳av中文字幕| 日韩精品不卡在线| 夜色www国产精品资源站| 东京热大輪姦多人1311| 日韩av在线播放+免费| 成片在线看一区二区草莓| 国产精品无需播放器在线观看| 久久伊人精品视频| 亚洲成人AV在线| 多乙亚洲国产中文综合| 91亚洲国产成人精品一区二三| 91av免费在线观看| 国产+日韩精品一区+欧美| 中文字幕不卡视频| 国产精品主播在线| 日本美女直播一区二区三区| 18+韩国美女主播| 欧美中亚洲中文日韩| 日本三级高清视频| 日韩欧美在线精品| 国内精品久久久久久久影视麻豆| 美女被咬小头头的视频| 亚洲+综合久久+成人av| 国产精品av一区| 中文字幕亚洲无线码在线一区| 真实粗暴交videos尖叫| 一亚洲区二区三区精品无码| 五月天丁香在线观看| 久久尤物免费一区二区三区| 黄色精品一区二区三区| 国产三级精品三级三级视频| japan丰满人妻videoshd高清 | 日韩欧美国产一区二区| 成在线人免费视频播放| 日韩欧美国产一区二区三区| 国产成人一区二区三区久久精品| 亚洲av成熟国产一区二区三区| 国产三级片在线视频观看| 久久99精品久久久久久不卡| 午夜精品一区二区三区免费| 主播大秀一区二区三区| 一区二区三区国产日韩欧美在线| 亚洲国产欧美日韩精品久久久| www.黄片.com| 八戒视频在线观看免费播放电视剧| hh网址高清无码| 制服丝袜在线视频| 97青草超碰久久国内精品91| 狠狠色噜噜狠狠狠777米奇小说| 国产女精品视频网站免费| 亚洲а∨天堂久久精品2021| 国产欧美日韩精品一区二区图片| 999在线观看免费高清电视剧| 韩国+欧美+国产| 天天综合亚洲综合网天天αⅴ| 欧美香蕉爽爽人人爽| 91插插插com| 装睡被陌生人摸出水好爽 | 熟女人妻av五十路六十路| 久久精品亚洲天堂| 二区三区偷拍浴室洗澡视频| 色播视频在线播放| 亚洲va久久久噜噜噜久久天堂| 精品乱码蜜桃久久久久久| 亚洲免费在线观看| 日本在线免费播放| 久久亚洲色一区二区三区| 91精品国产成人观看免费九色| 国产a∨国片精品白丝美女视频| 网友自拍+偷窥+国产| 日韩内射人妻1区2区3区| 亚洲免费在线观看视频一区| 大地资源中文一二三页的特点| 国产在线+123| 最新国产精品拍自在线观看| 欧美日韩激情在线观看免费| 日韩一区欧美激情校园春色| 西西4444www大胆高清图片| 人妻黑人一区二区三区| 777琪琪午夜伦倩电理片686还没。com | 97青草超碰久久国内精品91| 婷婷丁香五月激情综合| 99久久精品一区二区| 久久婷婷五月综合色99啪| 无码毛片一区二区| 伊人色综合视频一区二区三区| caoporn+视频| 天堂а√在线中文在线新版| 精品妇女一区二区三区下囿高潮| 伊人久久综合精品无码AV专区| 日本精品不卡免费在线播放| 日韩国产精品视频| 国产成人综合欧美精品久久| 999在线观看精品免费不卡网站| 乌克兰女人大白屁股ass| 97国产精品视频在线观看| 欧美成人精品三级网站视频| poronovideos黑人极品| 成人+网站+日韩毛片| 国产免费观看又黄又爽视频网站| 亚欧洲在线视频免费观看| 午夜乱蜜桃久久久乱| 精品乱人码一区二区二区| 国产乱子伦视频一区二区三区| 亚洲乱码一区av黑人高潮| 亚洲av无码一区二区三区网站| 日韩欧美成人网站| 欧美成人精品不卡在线观看| 亚洲国产精品成人综合色区| 欧美成人精品三级在线观看播放| 天堂а√中文最新版地址在线| 丰满人妻熟妇乱又伦精品劲 | 国产免费不卡午夜福利在线| 亚洲男女内射在线播放| 欧美+日本+亚洲| 色欲AⅤ亚洲情无码AV蜜桃| 国产av大陆精品一区二区三区| 国产成人综合久久精品免费| 亚洲AV一二三又爽又色又色| 女人床上高潮淫语HD| 国产亚洲五月天综合91| 乱色国内精品视频在线| 欧美综合天天夜夜久久| 婷婷涩嫩草鲁丝久久午夜精品| 日韩激情图片一区二区三区粉嫩 | 国产不卡av免费在线观看|