精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

中文字幕日产乱码一区| 伊人干网综合亚洲| 一本色道av久久精品+网站| 国产呦交精品免费视频| 麻豆国产一区二区三区| 精品欧美国产一区二区三区| www成人国产高清内射| 久久人人97超碰国产亚洲人| 日韩精品亚洲人成在线观看| 国内精品久久久久久网站| 国产suv精品一区二区四区三区 | 欧美中亚洲中文日韩| 亚洲噜噜狠狠网址蜜桃av9| 久久91精品国产91久久小草| 成年偏黄全免费网站| 中文字幕日韩一区二区不卡| 亚洲欧美日本在线观看视频| 三年DVD大全视频| 日韩精品中文在线一区二区| 精品国产美女福利在线不卡| 亚洲欧美国产国产一区二区三区 | 91成人在线免费观看| 337p粉嫩大胆色噜噜噜噜| av网站高清在线免费观看| 久久99精品无码一区二区| 中字幕一区二区三区乱码| 国产成人精品免费久久久久| 色综合天天综合网站在线观看 | 91亚洲视频在线免费观看| 亚洲精品欧美激情专区在线观看| 西西444WWW无码视频软件| 丈夫上司部长与妻子的相处之道| 久久精品成人欧美大片| 亚洲精品国产精品国自产中出| 老牛影视AV牛牛影视av| 欧洲av+成人+久久| 日本一级待黄大片| 午夜视频在线在免费| 三上悠亚在线日韩精品| 国产亚洲欧美另类第一页| www.国产成人在线免费看| 国产一区二区三区免费观看在线| 波多野结衣亚洲视频| www日本com| 粗大猛烈进出高潮视频免费看| 国产精品极品美女自在线观看免费| 欧美日韩成人在线免费观看| 日本真人做爰a片| 女人高潮奶头翘起来了| 国产剧情国产精品一区| 亚洲欧美丝袜精品久久中文字幕| 色欲天天网站欧美成人福利网| 国模大尺度福利视频在线| 国产av一区二区二区三区| av免费看片一区二区三区| 日韩精品一区在线观看视频| 成人做爰A片AAA毛真人| 粉嫩小泬18XXXⅩ高潮| 中文字幕日逼网站| 色噜噜亚洲男人的天堂| 国产乱子伦视频一区二区三区| 粗壮挺进人妻水蜜桃成熟漫画| va在线看国产免费| 国产色乱码一区二区三区| 国产区又黄又硬高潮的视频| 第一页中文字幕在线观看 | 国产+日韩+欧美| 国产+精品+美女| 欧美日本一区二区三区免费| 国产av国片精品| 亚洲欧洲成人a∨在线观看| 久久精品99久久香蕉国产| 国产欧美日韩高清在线不卡| 一区二区三区久久久国产| www久久精品亚洲国产| 无码AV最新无码AV专区| 免费无码又爽又刺激高潮视频看看老A| 麻豆国产尤物av尤物在线看| 亚洲精品成a人在线| 国产精品aaaa| 69xxxxx中国女人| 波多野结衣被多人伦轩| 在教室被同桌cao到爽漫画| 国产白嫩护士被弄高潮| 91在线免费视频观看| 亚洲乱码中文字幕综合234| 高清国产下药迷倒白嫩| 国产精品4huwww| 亚洲精品久久66国产高清| 无套内谢少妇在线观看视频| 人摸人从澡从超碰三级| 伊人久久精品无码二区麻豆| 亚洲中文无码天堂一区二区三区| 国产+亚洲+美女| 奶水人妻freeHDXⅩXX| 久久99国产综合精品女下载同 | www欧美国产丝袜一区二区| 制服丝袜诱惑在线观看一二区| 在线日韩中文字幕av网站| 国产午夜18久久久久久白浆| 精品乱码国产一区二区三区 | 日韩一区二区天堂在线观看| 7799国产精品久久久久| 天堂网www在线资源网| 国产97人人超碰cao蜜臀| 热久久这里只有精品| 亚洲永久免费播放片国产| 亚洲精品国男人在线视频| 国产亚洲精品久久久久久床戏| 97SE亚洲精品一区| 蜜臀av国内精品久久久| 国产区一区视频在线观看不卡| 在线观看免费国产视频了| 国产sm鞭打调教女m视频| 成人亚洲国产精品一区不卡| 辽宁熟女高潮狂叫视频| 欧美一区二区三区在线| 国产999视频在线观看| 亚洲+中文字幕+人妻| 黑人大鷄巴A片视频| 新婚少妇无套内谢国语播放| 免费人成视频网站在线下载| 综合久久婷婷丁香国产一区二区| 大波美女一级a久久午夜| 亚洲欧美日韩在线不卡| 日本丰满老熟妇乱子伦| 美女视频黄的全免费视频网站| 国内自拍av手机在线免费观看| 亚洲国产一区二区在线| 国产一区二区在线观看+在线播放| 国产91精品久久免費資訊| 色噜噜www亚洲男人天堂| 图片区小说区视频区综合| 亚洲成av人片天堂网无码】 | 国产激情小视频在线观看的| 国产精欧美一区二区三区| 扒开粉嫩的小缝喷白浆| 日韩欧美国产一区二区三区| 日韩一区欧美激情校园春色| 色悠久久久久综合网+香蕉| 喂奶试戏NP(高H| 上海熟搡BBB搡BBBB| 天堂8а√中文在线官网| 国产亚洲日韩在线a不卡| 日本一道一区二区视频| 99国精品午夜福利视频不卡99| 久久综合久久自在自线精品自| 亚洲麻豆91传媒| 免费人成黄页网址在线观看国产| 日韩欧美精品一区二区三区四区 | 欧美又大又黄又粗高潮免费| 久久精品国产欧美日韩亚洲| 91精品aa一区二区三区| 国产免费国语一级特黄aa大片 | 制服丝袜第一页在线| 成熟人妻av无码专区a片| 免费精品成人在线永久观看 | 少妇人妻精品无码专区视频| 色综合伊人丁香五月桃花婷婷| 成人+免费+真人视频| 欧美不卡一卡二卡三卡| 国产精品久久久久久久成人av| 亚洲日本久久香蕉视频h| 亚洲真人久久99精品| 嫩草影院ncyy| 91日韩精品久久久久身材苗条| 亚洲国产精品乱码在线观看97| 99国产精品片久久久久久 | 国产精品国产a级| 亚洲男人天堂一区在线观看| 国产精品伊人久久久久久| 亚洲三区在线观看无套内射| 亚洲人成网站18禁止中文字幕| 亚洲真人久久99精品| 免费+成人+在线观看| 日韩欧美一区二区三区五区| 17c.com喷水少妇| 欧美日韩在线四区| 久久免费少妇做爰| 国产午夜亚洲精品理论片八戒| 精品少妇一区二区三区四区五区| 色综合久久久久综合99| 青草伊人婷婷精品视频在线观看 | 国产92成人精品视频免费| 色综合久久久久久| 日本一二三不卡精品视频免费| 永久综合精品网站在线免费观看| 亚洲精品有码在线观看| 国产美女久久久免费牲交| 国产精品久久久久久妇女6080| 精品国产一区二区三区日日嗨| 日韩精品在线第一页| 四川少妇高潮无套毛片| 亚洲精品在线免费播放| 午夜欧美福利视频一区二区| 国产高潮又爽又刺激的视频免费| 东京亚洲女图片在线观看| 日韩av大片在线观看| 《巨乳人妻》风间由美| 六月婷婷在线观看| 亚洲乱码国产乱码精品精男男| 91麻豆国产福利在线观看| 精品国产一区二区三区四| 狠狠久久永久免费观看| 超碰中文字幕在线| 精品一区二区三区影院在线午夜| 在线观看+www| 美女互摸视频一区二区三区| 国产一级av一区二区在线| 清纯唯美亚洲专区国产精品| 亚洲综合国产精品一区| 狠狠综合久久av一区二区蜜桃| 精品一区二区三区无码免费直播| ww污污污网站在线看com| 中文字幕在线不卡黄色a| 国产黄片av一区二区三区四区| 欧美视频一区二区| 国产又色又爽又刺激在线观看| 亚洲欧洲国产日韩精彩视频 | 中文字幕无线码免费人妻| ass年轻少妇pic精品| 波多野结VS黑人无码| 亚洲影院丰满少妇中文字幕无码 | 亚洲∧V久久久无码精品| 无码人妻精品中文字幕不卡| 日韩欧美在线一级| 国产精品人人爽人人做av片 | 久久久久久久久人妻a免费看| 亚洲制服丝袜一区二区三区 | 国产美女精品视频线播放| 国产成人高清视频| 国内精品伊人久久久久777| 欧美综合在线视频| 日韩精品成人免费观看视频 | 9.1在线观看免费网站nba| 欧美日韩精品成人网视频| 男人扒开女人双腿猛进免费视频| 日本高清不卡a免费观看| 久久老熟女一区二区福利蜜臀| 中文字幕99免费精品视频网| 午夜婷婷精品午夜无码a片影院| 懂色av色吟av夜夜嗨 | 成人av在线资源| 小视频国产在线观看网站| 国产精品呻吟高潮久久久| 久久久久高潮毛片免费全部播放| av在线播放日韩亚洲欧| 亚洲色大成网站www看下面| 日韩在线视频观看免费网站| 久久精品视频在线看4| 国产激情一区二区三区小说 | KTV女技师啪啪无套内谢| 午夜免费福利视频| 午夜精品a片一区二区三区老狼| 1024国产视频| 国产伦理久久精品久久久久| 国产亚洲网曝欧美台湾丝袜| 东京热久久综合日韩精品| 国产亚洲AV片在线观看18女人| 久久六热视频精品女人66| av动漫在线观看一区二区 | 欧美日韩成人制服丝袜三级片| 一级肉体全黄裸片| 久久99国产精品久久99果冻传媒新版本| 最新国产在线观看中文字幕| 免费黄色小视频在线观看| 黄色免费av网站| 日本免码va在线看免费| 免费看国产一级特黄aa友片 | 国产a在亚洲线播放| 亚洲Av永久无码精品尤物 | 18禁国产精品久久久久久网站| 9·1免费观看完整版高清下载| 天堂网www中文在线| 欧美亚洲国产精品久久高清| 久久国产V一级毛多内射| 久久婷婷五月综合色99啪 | 日本二区三区欧美亚洲国产| 日本在线免费播放| 成年人黄页网站免费观看| 亚洲综合国产精品一区| 精品+国产+高潮| 日韩欧美三级在线| 美腿制服丝袜国产亚洲| 精品国产欧美一区二区三区不卡| 日韩美女免费毛片一区二区 | 骚贷大ji巴cao死你| 日韩欧美中文字幕在线播放| 国产婷婷一区二区三区久久| 久久人国产精品99久久久| 日本精品不卡免费在线播放| 三年DVD大全视频| 内射少妇一区27p| 亚洲精品av中文字幕在线在线 | 无码人妻精品一区二区三区9厂| 久久精品国产亚洲av成人婷婷| 18+在线观看网站| 波多野结衣无码一区二区| 中文字幕一区二区三区夫目前犯| 中国老妇淫片bbb| 日韩精品国产一区在线久草| 午夜精品久久久久9999高清| 中文字幕Aⅴ人妻一区二区| 国产一区+欧美+综合| 91精品国产色综合久久不8| 久久99精品久久久久久hb| 国产成人av三级在线观看 | 日韩精品免费一区二区三区竹菊| 桃色视频高清亚洲一区二区在线| 国产一级真人做受| 好爽…又高潮了毛片| 日本中文字幕在线不卡视频一区| 中文字幕+护士+漂亮| 热99国产精品久久久久久久| 亚洲一卡二新区乱码绿踪林| 99久久夜色精品国产亚洲| 一级二级三级亚洲欧美大片| 国产三级免费观看| 亚洲一区国产一区| 精品无人乱码一区二区三区的特点| 国产日产欧产精品精品ai| 久久久久人妻精品一区蜜桃| 亚洲不卡av一区二区三区| 嫩草影视911香蕉| 网站+激情+国产| 激情+国产+精品| 国产+在线+天堂| 999在线观看免费高清电视剧| 国产免费看又黄又粗又硬| 亚洲麻豆91传媒| 精品久久久久久无码中文字幕漫画 | 人人射欧美一区二区三区| 国产a∨国片精品白丝美女视频| 欧美日韩精品一区二区视频 | 精品无码免费专区毛片| 成年人免费视频在线| 国产午夜精品久久久久免| 久久精品国产亚洲av高清色| 欧美一区二区三区午夜视频 | 国产一二三四视频在线观看| 亚洲国产欧美日韩在线人成| 狠狠色噜噜狠狠狠狠777米奇小说| 亚洲综合另类小说色区一| 青草av久久免费一区| 欧美激情精品久久久久久| 亚洲+日产+欧美| 伊人色综合久久天天五月婷| 久久免费少妇做爰| 欧美+国产+精品| 亚洲伊人久久大香线蕉综合图片 | 亚洲精品字幕在线观看1| 亚洲旡码欧美大片| 图片小说视频一区二区| 一区二区三区四区免费视频| 亚洲精品久久久av无码专区| 高潮+喷水+白浆| 欧美视频在线观看精品二区| 国内精品九九久久久精品| 北条麻妃99精品久久朝桐光| 国产日韩欧美亚洲综合v精品| 18+在线看视频| 国产午夜av在线一区二区三区| 99re6热在线精品视频播放| 波多野结衣绝顶高潮喷水| 亚洲欧洲国产日韩精彩视频 | 久久久久久国产精品频道| 久久国产福利播放| 热99国产精品久久久久久久| 国产在线高清精品一区免费| 欧美艳星nikki激情办公室| 亚洲va欧美va人人爽春色影视| 国产在线精品一区二区不卡| 久久精品噜噜噜成人88aⅴ| 国产一线二线在线观看| 国产大片黄在线观看| 国产午夜福利在线观看红一片| 日本+超碰+专区| 久青草国产在线视频_久青草免| 天天天天做夜夜夜做| 天天揉久久久久亚洲精品| 日韩+成人+熟女| 窝窝午夜色视频国产精品破| 一区二区三区在线播放| 亚洲精品在线兔费观看视频| 久久人国产精品99久久久| 在线观看一区二区国产欧美| 不卡无码人妻一区二区| 国产三级视频播放线观看| 熟女老阿V8888AV| 在线一区二区三区视频| 欧美日韩亚洲综合精品第一页| 亚洲精品国产专区91在线| 一区二区三区+国产+欧美日韩| av无码+高潮+白丝| 久久www免费人成精品高清| a毛片终身免费观看网站| 国产中文在线三级不卡| 91麻豆精品国产自产在线的| 九色在线观看视频| 深圳妇女搡BBBB搡BBBB| 黑人巨大国产9丨视频| 天天爽夜夜爽夜夜爽精品视频| 在线日韩中文字幕av网站| 日韩国产欧美综合| 极品气质女神呻吟娇喘91| 对白超刺激精彩粗话AV| 91美女诱惑国产精品视频| 国产一级久久久久久大片| 欧美孕妇孕交黑巨大网站| 久久国产V一级毛多内射| 日韩av大片在线观看| 水蜜挑国产成人精品视频| 国产日韩欧美中文另类| 亚洲s码欧洲m吗国产精品| gogogo日本免费观看电视剧第17集| 亚洲av色噜噜噜久久久女同| 男女又色又爽又爽视频| 福利视频中文字幕一区二区| 夜夜高潮夜夜爽精品欧美做爰| 欧美成人黄色免费在线网站 | 高清无码午夜福利视频| 天天视频在线观看免费精品| 国产日韩综合av在线观看一区| 国产男女骚话淫语对白| 成人免费一区二区国产精品| 国产乱人伦偷精品视频不卡| 欧美高清美女视频一区二区三区| 日韩美女视频一区二区| 试镜床戏(巨肉高h)| 一本一道久久a久久精品| 少妇做爰全过内谢| 日本一级待黄大片| 日本任你躁免费精品视频2| 尤物网站视频免费看| 农夫+导航+亚洲| 超碰伊人久久大香线蕉综合 | 亚洲国产精品婷婷玖玖色| 日本精品少妇一区二区三区| 亚洲欧美激情五月在线观看| 亚洲日韩欧美在线无卡| аⅴ天堂中文在线| 亚洲va欧洲va国产va不卡| 久久精品国产清高在天天线| 亚洲欧洲日产国无高清码图片| 亚洲熟妇成人精品一区| 98+亚洲+在线视频| 国产精品三级赵丽颖| 精品日韩一区二区五月天| 国产超级a视频免费观看| 天堂网www最新版官网| 久久久久国产一区二区三区不卡| 精品视频在线观自拍自拍| 欧美日韩国产高清一区二区三| 亚洲欧美另类综合| エッチなh0930熟女俱乐部| 18+sexvideos| 毛片在线免费播放| 最好看的2018中文在线观看电视| 99国产一区二区| 无码中文字幕日韩专区视频| 777奇米四色成人影视色区| 国产在线观看免费观看99| 777婷婷天堂综合区色吧| 久久国产综合尤物免费观看| 成人在线午夜视频| 国产一卡2卡3卡四卡精品国色无边 | 久久综合久久88中字幕文| 姝姝窝人体www聚色窝| 国产后入激情视频在线观看 | 五月丁香综合激情| 中文字幕三级在线视频一区二区 | 在线观看免费国产中文字幕| 国产成人免费?在线播放| 亚洲制服国产丝袜综合四季av| 欧美成人在线免费观看| 苍井空第一次激烈高潮视频| 媚药侵犯调教放荡在线观看| 久久精品国产亚洲精品166m| 五月天丁香在线观看| 黄色免费网站视频| 2022一本久道久久综合狂躁| 激情视频免费在线观看| 日韩好片一区二区在线看| 99久久无码一区人妻a片蜜| 很黄的视频国产在线观看| 最近中文字幕完整版免费视频| 一本一道色欲综合网| 亚洲精品美女久久久久99| 亚洲欧美日韩一区二区三区在线| 国产v片在线播放| 久久国产精品——国产精品| 亚洲+日本+专区| 69大片视频免费观看视频| 中文字幕在线永久视频2018| 韩国做aj的视频大全| www+制服丝袜+美女| 亚洲精品1卡2卡3卡| 久久久国产精华液999999| 91麻豆国产精品91久久久久| 东北高大丰满BBBBzBBB| 探花视频免费观看高清视频| 美女视频图片久久黄网站| 真人女处被破69x176cc| 毛片黄色美女视频观看| 8090成人午夜精品无码 | 香蕉视频在线观看黄| 一区二区三区欧美| 伊人国产精品影院在线观看 | 精品国产一区二区三区久久久久| 一本大道中文日本香蕉| 久久综合亚洲欧美成人| 一区二区三区在线欧洲污| 中出素人久久久久久国产精品| 欧美日韩国产一区二区三区播放| 在线观看av国产一区二区| 国产精品久久久天天影视香蕉| 亚洲区欧美日韩综合 | [无码破解]AV破解版| 在线观看+中文字幕| 国产精品女同一区二区三区| 国产亚洲精品久久www| 日本极品丰满ⅹxxxhd| 久久精品国产字幕高潮| 久久人午夜亚洲精品无码区| 国产麻豆成人传媒免费观看| 国产+激情+在线观看| 欧美+国产+在线观看| 国产黄色在线网站| x7x7x7成人免费视频| 欧美在线人视频在线观看| 久久久久久自慰出白浆| 国产福利第一视频| 丰满少妇被猛烈进入试看| 午夜精品乱人伦小说区| 亚洲国产高清aⅴ视频| 国产一区精品va在线播放| 国产精品久久久久久久福利| 国产精品一级a级理论片在线 | 亚洲国产av一区二区污污污| 妙龄女被老汉压身小说作者其他小说 | 亚洲一卡二新区乱码绿踪林| 国产精欧美一区二区三区久久| 成人在线观看一区| 亚洲精品无码久久久久不卡 | 亚洲精品美女久久久久9999| 手机无码人妻一区二区三区免费 | 日韩中文字幕免费| 日本一级待黄大片| 亚洲欧美丝袜精品久久中文字幕 | 九九视频在线播放| 无码专区丰满人妻斩六十路| 国产91精品高清一区二区三区| 色狠狠一区二区三区熟女p| 国内自拍视频在线播放| 伊人69久久久久久综合国产| 99国产在线视频有精品视频| 美女网站免费在线观看日韩| 国精产品一区二区三区x88| 9+1+视频在线| 青椒国产97在线熟女| 亚洲综合精品一区二区三区| 国产欧美日韩精品一区二区蜜臀| 初撮五十路人妻熟女| 日韩美女精品一区在线视频| 国产成人精品一区二区| 国产原创在线观看福利精品| 亚洲精品国产av日韩精品| 白丝+美女+高潮| av综合网男人的天堂| 亚洲日韩在线观看免费视频| 日本老熟妇乱子伦精品| 国产偷国产偷亚洲清高app| 粉嫩B馒头一区二区| 99久久婷婷国产综合精品草原| 在线观看av一区| 日本熟妇色XXXXX日本免费看| 亚洲精品图片区小说区| 国产欧美成人精品www| 91在线视频免费看| 内射美女黄色大片免费观看| 韩国三级欧美三级国产三级| 在线看片免费人成视频久网| 精品中文字幕免费在线观看| 92国产精品午夜福利免费| 亚洲高清码在线精品av| 97人伦色伦成人免费视频| 西西4444www无码国模吧| 国语自产拍无码精品视频| 中文字幕在线观看网站| 成年人免费看的视频| 日本夜爽爽一区二区三区| 国产真实自在自线免费精品| 日韩1区3区4区第一页| 婷婷亚洲久悠悠色悠在线播放| 午夜精品一区二区不卡二卡| 亚洲精品欧美黄片在线免费看| 久久亚洲精品成人无码网站 | 国产又爽又黄又粗又硬视频| 肥臀浪妇太爽了快点再快点 | 超污视频在线观看| 日韩69永久免费视频| 肥臀熟妇淫语对白| 日韩+欧美+毛片| 中文字幕一区二区三区乱码在线 | 久久精品免费全国观看国产| 99久久久国产精品一区| 久久六热视频精品女人66| yy6080理aa级伦大片一级| 国产在线观看禁18| 亚洲免费视频网站| 日本一区二区视频免费| 欧美亚洲制服丝袜在线| 欧美日韩精品亚洲色图视频免费| 亚洲欧美综合色视频播放| 91偷拍精品一区二区三区| 欧美亚洲日本国产爽快片| 国产91在线免费观看视频| 日韩久久免费视频| 色欲色欲久久综合网| 亚洲制服丝袜中文字幕国产| 无码夜色一区二区三区| 国产午夜福利在线观看红一片| 久久久久国产精品人妻aⅴ网站| 亚洲婷婷天堂在线综合| 中文字幕不卡视频| 日本高清不卡a免费观看| 午夜精品久久久久久久| 一个人看的视频www中文字幕| 久久久久久久久人妻a免费看| 男女乱淫免费视频一区二区三区 | 麻豆国产av一区二区三区| 综合久久婷婷综合久久| 小视频免费在线观看| 国产精品自产拍高潮在线观看| 91香蕉视频国产在线观看 | 国产精品亚洲一区二区三区喷水| 一本之道色综合网站| 国产欧美一区二区三区免| 亚洲熟妇AV一区二区三区| 国产在线观看www污污污| 最新黄色在线观看一区二区三区| 亚洲精品自产拍在线观看动漫| 国产+免费+裸体| 九九九久久久精品| 99精品视频在线观看婷婷| 亚洲综合色aaa成人无码| 欧美激情videos| 999久久久国产精品视频| 亚洲黄色免费网站| 日韩+欧美+亚洲| 永久av免费在线观看| 伊人久久大香线蕉午夜av| 日本精品在线播放| 免费国产一级特黄久久| 92国产精品午夜福利免费| 亚洲日韩av综合无码一区| 日本熟妇色XXXXX日本免费看| 欧洲免费无线码在线一区| 在线观看一区二区三区四区| 成人精品视频网站| 久久国产欧美日韩精品图片| 国产最爽乱淫视频国语对白| 亚洲精品a片99久久久久| 牛牛视频一区二区三区| 精品欧美在线观看视频二区| 欧美亚洲精品一区二区| 毛片黄色美女视频观看| 精品久久久久久亚洲综合网站| 免费观看黄色一级片| 自拍+影音先锋+天堂网| 蜜臀国产在线观看激情网| 亚洲乱码日产精品bd在观看| 精品久久亚洲中文不卡| 日本欧美亚洲中文在线观看| 91视频最新入口| 国精品产品区三区| 9.1入口在线观看免费| 一本无码视频一区二区三区| 老牛影院在线观看免费下载电视剧 | 亚洲系列中文字幕| 狠狠色综合Tⅴ久久久久久| 国产成人久久av免费高清密臂| 欧美黑人欧美精品刺激| 国产乱淫av蜜臂片免费| 国产又黄又爽又色的免费| 韩国无码精品1区| 亚洲+激情+专区| 国产一区精品va在线播放| 国产女人久久精品视| 日本福利视频一区| 99re6热在线精品视频播放| 六月丁香五月激情综合| 亚洲无码视频一区| 亚洲+欧洲+日韩在线| 日本欧美一区二区三区乱码| 亚洲欧美自拍色综合图| 精品人伦一区二区三区蜜桃网站| 99久久夜色精品国产网站| 视频精品一区二区| 日韩人妻无码免费视频一二区| 丰满大乳班主任趴下让我玩视频| 亚洲一区二区免费在线观看| 欧美在线色视频在线观看| 欧美jizzhd欧美18| аⅴ天堂中文在线| 亚洲色图日韩伦理国产精品| 最新国产精品好看的精品| 亚洲综合五月天婷婷丁香| 男人天堂亚洲天堂视频在线观看| 香蕉视频在线观看国产婷婷| 一区二区三区(欧美激情)| 人妻无码专区一区二区三区| 成在线人免费视频播放| 日韩综合无码不卡Av | 在线观看日本高清=区| 又色又爽又黄还免费视频| 漂亮人妻中文字幕丝袜| 精品女同一区二区三区免费站| 亚洲欧洲AV无码区玉蒲区| 蜜臀av免费一区二区三区久久乐| 无码人妻一区二区三区筱田优| 国产精品久久久久av熟女老人| 永久免费无码日韩视频| 欧美人牲交a欧美精区日韩| 亚洲AV欲女久久天天躁| 国产午夜亚洲精品羞羞网站| 两根茎一起进去好爽a片在线观看| 日本熟妇japanese丰满| av三级在线播放| 久久成人人人人精品欧| 亚洲av成人国产精品动漫| 日韩精品免费一区二区三区四区| 国产精品一区二区三区va| 国产精品96久久久| 99国产精品片久久久久久| 91亚洲欧美中文精品按摩| 国产精品高潮久久久久久| 人妻少妇无码精品专区| 国产精品久久国产| 久久久亚洲av男人的天堂| 动漫美女h黄动漫在线观看| 玩弄少妇人妻中文字幕| 在线+中文字幕在线观看| 日本少妇自慰免费完整版| 久久青青草原国产毛片夜夜亚洲| 日韩激情一区二区三区| 欧美精品久久久久久久久久白贞| 国产精品高潮久久久久久| 美女制服丝袜国产精品网站| 欧美国产成人免费观看| 破了亲妺妺的处免费视频国产| 国产亚洲综合久久系列| 国产欧美日韩一区二区刘玥| 国产精品一卡2卡三卡4卡 | 窝窝看看国产精品| 日本xxxxl码在中国是几码| 国内精品久久久久久影院| 国产精品苏妲己野外勾搭| av天堂午夜精品一区二区三区| 人妻中文在线一区二区三区| 欧美麻豆精品久久久久久 | 久久人妻无码一区二区三区av| 色婷婷一区二区三区av免费看| 四虎影视1515hhc0m| 午夜理论欧美理论片| 美女久久久久久久久国产| 亚洲精品成a人在线| 四川少妇搡BBB搡BBB搡多人伦| 日韩精品亚洲aⅴ在线影院 | 日本视频在线免费| 午夜理论片yy6080私人影院| 亚洲+欧洲+国产成人av| 一个人看的国产精品视频| 亚洲日本中文字幕在线四区| 狠狠婷婷色五月中文字幕| 欧美国产日韩在线观看视频一区 | 国产美女网站18禁| 一级做a爰片久久毛片a| 午夜婷婷精品午夜无码a片影院 | 成人+免费+在线观看| 精品人妻码一区二区三区| 国产精品好好热av在线观看| 青青草国产午夜精品| 熟妇人妻无乱码中文字幕蜜桃| 亚洲欧洲美色一区二区三区| 国产97在线观看| 出轨人妻毛片一级| 久操视频免费在线| 久久青青草原国产最新片完整| 国产+免费+福利| 亚洲国产精品日韩av不卡在线| luna精品videossex| 日韩精品一卡2卡3卡4卡新区| 亚洲a片成人无码久久精品色欲| 久久精品亚洲成在人线av麻豆| 午夜精品久久久久久久久久| 欧美精品v国产精品v曰韩品| 亚州精品国产精品乱码不99按摩| 日日碰狠狠添天天爽五月婷| 国产丰满麻豆vⅰde0sex| 国产内射一区二区xxx| 91黄视频在线观看| 亚洲熟妇AV一区二区三区| 久久久久国产精品夜夜夜夜夜| 中文字幕熟女人妻偷伦| 宅女午夜福利免费视频| 欧美日韩国产一区二区三区播放| 日韩中文字幕在线观看一区二区| 国产av国片精品| 亚洲欧美日韩中文加勒比| 久久久久国产精品嫩草院| 欧美日韩中文字幕久久久不卡| awww在线天堂bd资源在线| 中文字幕+欧美精品+制服丝袜 | 精品日韩在线播放| 中文字幕+居然+磁力| 99精产国品一二三产品香蕉| 久久久久久国产精品频道| luna精品videossex| 91精品国产免费久久久久久| 日韩中文字幕v亚洲中文字幕| 亚洲丝袜制服诱惑第一区二区| 久蜜av色av熟女一区| 91在线公开视频| 亚洲又黑又粗又硬又爽视频| 中文字幕+国产精品| 日本乱子伦一区二区三区| 国产日韩欧美手机在线视频| 国产精品乱子伦XXXX| 漫画免费观看漫画大全 | 91在线观看18| 国产+免费+白浆| 亚洲天堂2017无码| 中文字幕亚洲第14| 日本道免费精品一区二区| 亚洲乱码中文字幕手机在线| 国产精品久久久人人看人人| 97在线视频观看| 论坛+视频+无码| 乱子伦息子一区二区| 96国产xxxx免费视频 | 91久久久久久亚洲精品蜜桃| 亚洲AV日韩AV无码黑人| 亚洲成人精品久久久国产精品| 亚洲精品午夜国产va久久成人| 亚欧洲在线视频免费观看| 中文字幕视频在线欧美一区| 2018年亚洲欧美在线视频| 亚洲+男人的天堂+一区二区| 国产欧美在线观看不卡| 国产精品欧美一区二区三区喷水| 欧美老妇bbbwwbbbww| 男人a天堂手机在线版| 丰满日韩放荡少妇无码视频| 1024国产视频| 伊人久久大香线蕉午夜av| 91精品国产人妻国产毛片在线 | 亚洲s久久久久一区二区| 综合久久婷婷丁香国产一区二区| 欧美视频一区二区三区福利| 小视频在线观看免费日本色| 国产免费av综合片在线观看| 白嫩少妇各种bbwbbw| 亚洲中亚洲中文字幕无线乱码| 国产欧美综合在线观看第十页| av综合网男人的天堂| 91亚洲一区二区三区视频| 国产美女久久久免费牲交| 18+sexvideos| 久久中文字幕无码一区二区| 在线人人车操人人看视频| 真人做爰高潮全过视频| 九九热视频在线播放| 国产亚洲综合久久系列| 伊人久久成综合久久影院| 久久中文字幕人妻熟av| 亚洲国产精品综合久久网各| 青草影院内射中出高潮| 久久国产露脸老熟女熟69| 热久久久久久久久| 2021久久超碰国产精品最新| 少妇久久久久久被弄高潮| 惠民福利国产美女爽到喷出水来视频| 国产成人av在线麻豆影院| 免费在线观看a级片毛片| 中文字幕在线视频免费视频| 成视频年人黄网站视频福利| 欧美日韩人成视频在线播放| 亚洲人成未满十八禁网站| 强奷漂亮少妇高潮麻豆| 毛片视频在线免费观看| 久久99精品国产麻豆| 国产熟女高潮精品视频区| 日韩+成人+熟女| 亚洲一区久久精品东京热| 91精品国产综合久久久蜜臀九色| 久久精品这里热有精品| 国内大量偷窥精品视频| 日韩熟妇中文色在线视频| 97精品无人区乱码在线观看| 国产妇女馒头高清泬20p多毛| 东北老女高潮过瘾对话| 国语精品深夜亚洲妇久久资源| 亚洲精品自产拍在线观看动漫| 妇女bbbb插插插视频 | 天堂av一区二区| 国产精品三级一区二区| 贵州小少妇BBAABBAA视频| 国产不卡av免费在线观看| 欧美成人精品三级在线观看播放| 免费看日产一区二区三区| 成人免费福利片在线观看| 国产又黄又粗又爽又色的视频| 丁香啪啪中文字幕亚洲人成一区| 国产山东熟女48嗷嗷叫| av片子在线观看| 国产在线观看免费高清电视剧大全| 少妇高潮喷水视频| 欧美成人精品三级在线观看播放| 欧美日韩不卡视频合集| 亚洲精品在线观看aaa| 别揉我奶头~嗯~啊~一区二区三区| 中文有码视频在线免费观看| 日韩国产一区二区三区| 高清国产午夜精品久久久久久| 波多野结衣之欲乱护士| 欧美成人福利视频| 全球成人中文在线| 正在播放懂色av| 青娱乐国产盛宴视频在线观看| 亚洲欧洲精品成人久久av18| 国产精品日韩av网站国产女人| 99国产精品免费播放| 18+sexporn| 国产精品丝袜黑色高跟鞋v18| 蜜臀精品国产高清在线观看| 免费+精品+视频| 日韩精品中文在线观看一区| 顶级欧美熟妇xx| 黄色毛片一级黄色| 中国女人做爰A片| 国产又粗又黄又硬又爽的毛片| 一区二区视频在线免费观看| 黑蝴蝶第一AV导航| 精品国产一区二区三区日日嗨| 国产VA免费精品高清在线| 国产在线观看免费人成视频| 在线日韩中文字幕av网站| 慈禧一级淫片免费放特级| 波多野结衣+中文字幕公交车催情| 国产美女在线精品免费观看| 亚洲国产综合久久一区二区| 日韩av三四级在线观看 | 三年成全免费观看影视大全| 18+国产在线拍揄自揄视精品| 天天躁日日躁狠躁欧美| 9·1免费观看完整版高清下载| 欧美视频日韩视频亚洲视频| 日韩69永久免费视频| 久久亚洲色一区二区三区| 99久久免费精品国产72精品九九| 情人伊人久久综合亚洲| 天海翼精品久久久久中文字幕| 欧美一区二区三区红桃小说| 一级黄色大片免费观看| 国产精品丝袜一区二区| 精品人妻艳妇嫩草AV少妇| 欧美一级黄色录像| 国产精品vr虚拟专区| TokyoKoT大交乱| 伊在人亚洲香蕉精品区| 亚洲一区二区三区日韩在线视频| 天堂а√在线地址中文资源| 精品中文字幕免费在线观看| 人妻无码中文专区久久av| 75歳の熟女セックス合集牛牛| 男女做www免费高清视频网站| 黑人外教人妻HD中字| 樱花影院电视剧免费| 亚洲日韩欧洲无码av夜夜摸| 日韩三级国产三级| 99国产精品久久久蜜芽| 国产91精品久久久久久精华液| 九九99久久精品在免费线bt| 特级特黄AAAAAAAA片无锁| 麻豆日产精品卡2卡3卡4卡5卡 | 在线亚洲精品国产二区图片欧美| 国产伦精一品二品三品app| 无码国产精品一区二区免费模式| 国产91在线观看丝袜| 国内精品伊人久久久久影院麻豆| 岛国片在线播放97| 久久久久久久国产精品免费| 久久精品国产第一区| 亚欧乱色国产精品免费九库| 玖玖精品在线视频| 99久久久久久国产精品| 91久久精品无码专区嫖妓| 国产精欧美一区二区三区久久| 香蕉视频精品官网在线观看| 韩国一级精品毛片| 狠狠综合久久av一区二区| 人成午夜大片免费视频| 免费av大全网站在线观看| 美女视频黄是免费| 精品国产美女av久久久久 | 黄色免费在线播放| 91精品福利在线观看| 亚洲精品乱码久久久久久按摩| 日韩在线一区高清在线| 国产黄色一区二区| 国产嫩苞又嫩又紧AV在线| 伊在人亚洲香蕉精品区| 国产美女www爽爽爽免费视频| 国产精品久久久久久四虎| 一级午夜黄色视频| 久草香蕉在线视频国产乱码精品一区二区三上 | 国产成人精品免费视频| 国产精品69久久久久不卡| 欧美+国产+极品| 影音先锋大型av资源| 国产VA免费精品高清在线| 八戒八戒在线www视频中文| 日韩三级伦理片色呦呦中文字幕| 欧美视频一区二区三区福利| 少妇一级娃片淫片象免费放| 国产91精品久久免費資訊| 国产亚洲视频中文字幕不卡| 超级碰碰人妻中文字幕| 京熱大亂交无碼大亂交| 三年片在线观看免费观看大全+下载| 欧美日韩视频在线观看一区| 久久精品国产v日韩v亚洲| 欧美+国产+麻豆| 久久久久久国产精品| аⅴ天堂中文在线网| 亚洲中国精品黄色av一区| 亚洲暴力色三八AV综合网| 亚洲日韩av无码不卡一区二区三区| 国产高清一区二区三区视频| 国产91高潮流白浆在线麻豆| 人人躁日日躁狠狠躁av| 伊人久久大香线蕉av最新| 久久久婷婷五月亚洲97色| 国产高潮女主播视频一区| 熟女老阿8888AV| 美日韩熟女与少妇精品激情| 中国极品少妇XXXXX1314| 日韩高清亚洲日韩精品一区二区| 精久国产av一区二区三区孕妇| 国产精品视频播放| 日本乱码一区二区三区不卡| 3344国产永久在线观看视频| 国产精品久久久久久久竹霞| 欧美日韩黄色一级片| 男人的天堂免费视频| 欧美又大又黄又粗高潮免费| 国产免费无遮挡吸乳视频app| 国内外成人免费视频| 亚洲精品字幕在线观看1| 四虎成人永久在线精品免费 | 亚洲一区二区三区高清在线看| 97精品免费视频| 52avavjizz亚洲精品| 亚洲一卡二新区乱码绿踪林| 久久久久夜色精品国产老牛91| 国内乱子对白免费在限| 中文字幕+17c| 国产成人久久精品二区三区| 嫩草欧美曰韩国产大片| 久久无码人妻一区二区三区午夜 | 中文字幕中文字幕在线网| 93国产精品久久久久久| 成·人免费午夜无码视频蜜芽| 欧美日韩一区二区免费视频 | 日韩欧美高清在线一区二区 | 免费+精品+国产精品| 伊人色综合久久天天网| 人摸人从澡从超碰三级| 打屁股+do+调教文| 精品国产第一区二区三区有码 | 国产99精品最新在线播放| 97人妻碰碰中文无码久热丝袜| 欧美精品黄片一区二区三区| 俄罗斯精品一区二区| 久久综合久久88中字幕文| 人人妻人人澡人人爽人人dvd| 国产av一区二区三区天美| 午夜国产av新品一区二区| 亚洲爆乳www无码专区| 99香蕉国产精品偷在线观看| 一级特黄aa大片免费播放| 中文字幕在线播放不卡| 大胆欧美高清videosedexohd| 亚洲+激情+专区| 国产+在线+激情| www.国产日韩在线视频| 国产午夜影视大全免费观看| 午夜看片在线观看| www成人国产高清内射| 99re在线视频这里只有精品 | 欧美激情中文字幕综合八区| 高清不卡二卡三卡四卡免费| 精品国产亚洲一区| 国产一区不卡视频在线播放| 亚洲精品天天影视综合网| 国产又爽又粗又猛的视频| 亚洲综合天天夜夜久久| 九九热视频在线播放| [无码破解]AV破解版| 久久久国产精华液999999| 午夜三级av在线播放| 国产+剧情+喷水| 国产99久久精品一区二区蜜| 国产精品福利网红主播| 精品国产乱码久久久久久口爆网站| 99久久国产综合精品女同| 一本加勒比HEZYO无码| 最好看的2018中文在线观看电视| 狠狠综合久久久久尤物| 国产欧美精品一区| 一区二区三区日韩亚洲中文视频 | 偷拍+剧情+影音先锋| 欧美阿v高清资源不卡在线播放| 日本精品久久久久久| 日韩欧美丝袜中文字幕诱惑| 国产福利视频一区| 欧美熟妇交换做爰XXXⅩ网站| 欧美精品久久久久久久久久| 少妇做爰又色又紧夜视频| 国产大片黄在线观看私人影院| 一本色道HEZYO无码专区| 亚洲综合www在线观看| 国产+免费+综合| 中文字幕亚洲综合久久综合| 小h片免费观看久久久久| 欧美+国产+中文| 午夜精品久久久久久久久久| 91麻豆精品国产自产在线的| 大尺度做爰黄9996片视频| 人妻の乳を揉んで痴汉| 日韩欧美国产一区二区福利| 国产精品成人亚洲一区二区| 国产精品99久久久久久董美香| 97超碰在线免费观看| 欧美v欧美v视频在线观看视频| 国产微拍精品一区| 免费大香伊蕉在人线国产| 色哟哟免费视频播放网站| 欧美一区午夜精品久久福利| 亚洲一卡二卡三卡四卡在线看| 国产精品欧美三区四区五区 | 亚洲精品日韩一区二区小说 | 手机看片福利永久国产香蕉| 91久久精品无码专区嫖妓| 国产亚洲成年网址在线观看| 国产精久久久久久一区二区三区| 精品卡一卡二卡3卡高清乱码| 久久人人爽人人爽人人AV| 亚洲天堂在线观看樱花| 国产精品久久av免费观看 | 亚洲色大成网站www尤物| 黑人又粗又大XXXXOO| 国产精品久久久久一区二区国产| 欧美一级黄色录像| 亚洲va中文字幕不卡无码| 麻豆精品无人区码一二三区别| 97国产线视频在线观看| 精品久久久久久777米琪桃花| 内射老太太b里面| 一区二区免费视频| 四虎国产精品成人免费入口 | 一个人午夜观看在线中文字幕| 97视频在线观看免费| 久久久久亚洲AV无码专不卡| 亚洲第一区欧美国产不卡综合| 日本无卡码高清免费v| 国产剧情中文字幕一区二区| 国产+成人+欧美| 国产无遮挡又黄又大又不要vip| 欧美激情国产一区二区13| 国产无人区码一码二码三mba| 日韩美女/一区二区三区| 国产+麻豆+美女| 国产免费又爽又色又粗视频| 欧美日韩另类图片亚洲视频| 婷婷亚洲久悠悠色悠在线播放| 欧美激情内射喷水高潮| 精品亚洲欧美日本在线观看| 欧美艳星nikki激情办公室| 免费在线观看黄片| aaa欧美色吧激情视频| 日韩免费在线播放一级黄片| 亚洲va欧洲va国产va不卡| 亚洲Av日韩精品久久久久| 思思青青人人草热视频| 五月婷婷激情小说| 亚洲最新中文字幕成人| 台湾亚洲精品一区二区tv| 欧美国产日韩在线一区二区三区| 国产偷人妻精品一区| 亚洲人成伊人成综合网小说| 国产裸体舞一区二区三区| 免费看又色又爽又黄的国产| 在线亚洲97se亚洲综合在线| 日韩和的一区二在线| 亚洲制服丝袜中文字幕国产| 免费乱理伦片奇优影院| 国产一区二区黑人欧美xxxx| 日韩av免费在线看| 亚洲妇熟xx妇色黄蜜桃| 日韩精品在线毛片| 中文字幕在线播放不卡| 日韩在线观看永久免费视频| 四虎成人精品永久网站| 黄色一级片免费播放| 欧美成人a免费在线观看| 十八禁污视频在线观看无遮挡| 日韩黄片一区二区在线观看| 中文国产成人精品久久一区| 国产一区二区三区精品在线| 少妇极品熟妇人妻无码 | av男人天堂最新亚洲天堂| 成人在线手机视频| 国产在线清纯极品美女援交| 区二区三区玖玖玖| 麻豆精品久久久久久久99蜜桃| 亚洲欧美中文字幕在线net| 久久精品国产亚洲av高清观看| 在线人视频观看免费| 中文字幕乱码一区av久久不卡| 日本猛少妇色xxxxx猛叫| 影音先锋熟女人妻| 亚洲码欧美码一区二区三区| 国产+日产+欧美| 国产麻豆91欧美一区二区| 久久婷婷人人澡人人喊人人爽| 992成人做爰视频| 久久免费黄色网址| 久久亚洲精品成人无码网站| 精工厂777免费观看电视剧| 法国色情巜卧室肉欲| 免费国产黄网站在线观看| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 国产后进白嫩翘臀在线播放| a在线观看免费网站大全| 人人爽日日躁夜夜躁尤物 | 国产黄a三级三级三级av在线看| 日韩第一页视频在线观看| 国产精品国产三级国产不产一地| 国产精品久久久久久久久潘金莲| 国产精品一区二区av影视| 久久久精品国产精品国产网站| 欧洲亚洲日本国产一区二区| 无码av无码一区二区桃花岛| 精品国产乱码久久久久久下载| 成人精品一区二区三区A片用毒蛇| 中文字幕+乱码+中文字幕在线观看| 成人无码www免费视频嘿嘿软件| 亚洲+欧洲+国产av| 国产第一页浮力影院草草| 亚洲伊人精品伊人7777| 国产真实露脸精彩对白| 一级黄色大片免费观看 | 美女久久久久久久久久| 中文字幕不卡视频| 国产少女免费观看电视剧字幕大全下| 一区二区三区在线观看视频| 日本一区二区更新不卡| 日韩+欧美+高潮| 一本大道苍井空波多野结衣| 国产xxxx视频在线观看| 久久99精品视频免费观看| 十八禁污视频在线观看无遮挡 | 国产99久久精品免费看| 中文免费高清在线观看电视剧| 特级特黄AAAAAAAA片无锁| 特级西西444www无码视频免费看| 夜夜爽一区二区三区| 很黄的视频国产在线观看| 女女女女女裸体处开bbb| 激情视频免费在线观看| 久久综合九色综合欧美狠狠| 99精品国产免费| 91日本人妻精品一区二区| 亚洲三级在线观看| 久久国内精品自在自线图片| 日本片黄在线观看免费| 国产xxxx视频在线观看| 特级西西xXWWW无码| 最新中文字幕免费在线观看| 亚洲欧美日本中文字天堂| 国产在线精品免费| 在线观看免费高清视频大全追剧| 亚洲国产一区二区波多野结衣| 久久精品成年人免费看国产片| 特级西西444www大胆免费看| 精品婷婷乱码久久久久久| 国产又粗又黄又爽又硬网站| 最近2019年中文字幕视频| jzzijzzij日本成熟丰满| 青青草原亚洲视频| 国产在线精品一区二区夜色| 国产精品户露av在线户外直播| 91麻豆精选国产自产免费观看| 欧美黄色激情视频| 国产亚洲视频在线播放香蕉| 欧美三级韩国三级日本播放| 中文字幕乱码中文ktv| 永久综合精品网站在线免费观看 | 免费+成人+国产| www九九热com| 日本中文字幕亚洲乱码| 99久久精品无免国产免费75 | 国产免费午夜福利久久久| 天天狠天天添日日拍捆绑调教| 国产二区交换配乱婬| 国产+欧美+欧洲| 中文字幕欧美精品一区二区三区| 日韩欧美在线精品| 成人免费在线网站| 粉嫩BBBBBBBBB精品| 日韩精品成人亚洲欧美在线观看 | 国产日韩欧美精品| 国产+日本+高潮| 欧美亚洲国产另类第一页| 国产资源在线观看| 国产午夜在线播放| AV天堂无码资源网| 久久久国产精品视频免费看| 精品一区二区三区四区五区六区 | 搡BBBB搡BBBB搡BBB| 国产精品二区三区四区五区| 久久av中文字幕| 成人视频在线18| 无码av无码一区二区桃花岛| 91麻豆精产国品一二三产品测评| 另类天堂网不卡另类系列| 少妇高潮流白浆在线观看| 国产午夜一区二区三区| 自拍视频国产三级| 国产裸体舞一区二区三区| 亚洲综合色区另类av| 亚洲一级视频在线观看视频| 亚洲精品v欧洲精品v日韩精品| 欧美亚洲日韩在线在线影院| 91麻豆精产国品一二三产品测评| 亚洲综合国产精品第一页| 四虎国产精品成人免费入口 | 亚洲精品高潮呻吟久久av| 国产又爽又黄无遮挡免费视频| 日韩精品+久久久+免费观看| 夜夜躁狠狠躁2021| 亚洲免费午夜视频在线观看| 国产精品人人妻人人爽人人牛| 亚洲午夜精品一区| 国产淫伦久久久久久久kkk| 久久亚洲精品中文字幕波多野结衣| 无码+护士+磁力链接| 自拍+影音先锋+天堂网| 久久99精品久久久久久不卡 | 初撮熟女撮り老女人| 亚洲国产日韩a在线乱码| 国模冰莲小泬喷潮337p| 711公侵犯美丽人妻| 四虎永久在线精品免费视频观看| 亚洲国产日韩欧美愉拍精品| 国产又爽又黄又粗又硬视频| 午夜黄色永久视频| 国产午夜亚洲精品羞羞网站| 一区二区精品视频大全在线播放| 真实国产乱子伦一区二区三区| 中文字幕资源在线| 四虎永久在线精品免费网站| 国产精品久久久久av熟女老人| av无码精品一区二区三区三级| av黄网站免费永久在线观看| 亚洲日韩av综合无码一区| 日本精品中文字幕在线播放 | 真人床震高潮全部视频免费| 精品欧美亚洲一区国产高潮| 亚洲人成无码WWW久久久| 18+av在线免费| 中文字字幕永久在线观看| 四虎精品国产永久在线观看| 又爽又色禁片1000视频免费看| 人妻无码一区二区不卡无码av| 亚洲日韩av一区二区三区中文| 日韩成人无码毛片一区二区| 美女视频一区二区| 欧美久久成人一区999| 高潮+白浆+在线观看| 瑜伽+无码+thunder| 亚洲国产精品综合久久网各 | 最近免费日韩在线视频观看| av在线播放日韩亚洲欧| 亚洲av蜜桃永久无精品| 国精产品乱码视频一区二区| 7777淫语有声小说| 亚洲乱码国产乱码精品精不卡| 日韩免费无码视频一区二区三区| 日韩中精品文字幕在线一区| 亲子乱一区二区三区的解决方法| 绯色AV色窝窝无码久久免费酒店| 亚洲国产精品suv| 亚洲欧美成人一区二区三区| 欧美日韩国产制服精品第二页| 久久精品国产乱子伦| 国产午夜亚洲精品国产成人最| 免费观看+影音先锋| 一本色道久久88综合日韩精品| 在线人人车操人人看视频| 国产精品99久久久久久有的能| 亚洲+欧洲+国产成人av| 国模大胆一区二区三区| 欧美日韩在线精品一区二区a| 狠狠精品久久久无码中文字幕| 免费人成视频19674不收费| 9久久国产精品免费视频| 亚洲欧美在线中文字幕不卡| 久久久久国产一区二区三区不卡 | 精品乱码久久久久久久| 亚洲精品自产拍在线观看动漫 | AV不卡在线永久免费观看| 久久国产精品免费| 国产精品久久免费观看spa| 日韩精品一区二区免费视频| 成人在线精品视频| 国产精品又爽又粗又长又硬 | 精品国产污污免费网站入口自| 三个熟睡少妇的按摩中文字幕| 亚洲国产精品一区二区999| 欧美日韩一区二区三区视频播放| 国产精品夜夜爽7777777| 雯雯的肉奴生活1—48| 亚洲真人久久99精品| 免费黄色小视频在线观看| 久久免费午夜福利院| 亚洲精品丝袜国产自在线| 国产欧美日韩欧美一区二区| 国产又黄又粗无遮挡全黄色视频| 国产成人亚洲欧美一区综合| 午夜精品第一区第二区第三区| 精品一区二区国产免费av| 免费视频在线观看网站| 国产乱码一区二区三视频| 亚洲视频在线免费观看一区二区 | 久久综合精品无码av一区二区三区| 伊人久久大香线蕉综合影院首页| 婷婷激情偷拍在线| 国产亚洲精品久久久久久小舞| 大香蕉网国产在线观看av | 亚洲а∨天堂久久精品9966| 国产主播户外勾搭人xx| 嫩草嫩草嫩草久久水拉丝了| 久久久噜噜噜久久熟女aa片| 尤物精品国产第一福利网站| 国产高清a视频在线观看| 久久精品中文字幕无码| 一区二区三区四区亚洲| 久久中文字幕乱码久久午夜| 国产亚洲精品久久久久久无| 免费在线观看视频一区二区| 18+成人在线观看| 国产精品免费一区二区三区观看 | 精品久久亚洲中文字幕| 欲求不满的岳中文字幕| 国产又色又爽又黄又免费软件| 成av免费大片黄在线观看| 乱码一卡二卡新区永久入口| 久久久久久国产精品美女| 狠狠色狠狠色综合日日小说| 国产国拍精品av在线观看| 和闺蜜野外交换做爰的注意事项| 久久国产精品免费| 女人做爰高潮全黄| 日韩中文字幕在线观看一区二区| 欧美日韩一区二区三区妖精| 偷柏自拍亚洲综合在线| 国产乱码卡二卡三卡老狼| 美女高潮黄又色高清视频免费| 国产精品中文字幕日韩精品| 欧美日韩国产精品久久乐播| 2014av天堂无码一区| 亚洲精品成人片在线观看精品字幕| 亚洲国产福利成人一区| 久久国产欧美日韩精品图片| 国产精品av久久久久久无| 91精品国产一区二区三密臀| 久久久久久国产精品| 九一麻花传剧mv免费观看影视大全| 国产视频一区二区在线免费观看 | 太骚了全程淫语!| 91国偷自产中文字幕久久| 茄子香蕉榴莲草莓丝瓜绿巨人污| 一区二区三区+视频| 巜波多野结衣私人教师| 国产成人午夜福利高清在线观看| 久久国产精品免费视频| 一区二区三区久久久国产| 中文人妻av久久人妻18| 国产传媒淫语对白AV| 精品国产美女www爽爽爽| 一级做a爰片久久毛片高清流畅| 国内外成人免费视频| 琪琪777午夜理论片在线观看播放| 91久久久久久国内免费视频| 亚洲天堂第一在线视频看看| 精品一区精品二区| 久久久激情一区二区三区| 99精品在线观看中文字幕| 亚洲天堂在线观看视频| 不卡av中文字幕| 一区二区三区在线观看视频免费| 亚洲va久久久噜噜噜狠狠久久| 久久精品国产sm调教网站演员| 蜜臀av在线播放一区二区三区| 波多野结衣《温泉人妻》| 欧美日本亚洲视频一区二区| 国产欧美日韩一区二区国内| 国产精品中文字幕日韩精品| 人成午夜免费视频在线观看| 欧美精品一区二区蜜臀亚洲| 日韩av免费在线看| 91看片淫黄大片一级在线观看 | 成在人线av无码免费看网站| 国产成人一区二区三区在线播放| 高清无套内精线观看456| 日本欧美成人精品在线观看| 亚洲精品无码久久久久不卡网址| 国产真实露脸精彩对白| 精工厂777免费观看电视剧| 久久久91色精品国产一区| 久久国产午夜精品理论片34页| 欧美午夜精品久久久久久视| 中文字幕久久精品无码| 国产无遮挡又黄又爽免费网站 | 日本最大色倩网站www| 国产精品毛片一区二区在线看舒淇 | 一区二区三区在线观看视频免费| 国产精品夫妻视频| 丰满+迅雷+中文字幕| 色婷婷五月综合亚洲小说| 国产熟女一区二区三区+视| 久久久久久久久久国产视频| jzzijzzij日本成熟丰满| 欧美+群p+在线观看| 美女黄色视频网站入口在线看| 色噜噜日韩精品欧美一区二区| 五月天婷婷激情网| 日韩欧美高清在线观看| 论坛+视频+无码| 日本护士xxxxhd少妇| 国产一级在线视频免费观看| 一区二区三区免费看| 美女高清久久久久久小视频| 国产福利一区二区手机观看| 精品国产日韩欧美一级一区二区三区| 97人妻系列高清一区二区 | 国产又大又硬又粗的视频| 国产三级精品三级在线| 牛牛视频一区二区三区| 99国产精品片久久久久久| 美女诱惑一区二区| 日韩在线中文字幕| 国产日韩欧美系列一区二区| 亚洲精品久久久久一区二区三区| 日韩av手机在线免费播放| 免费+日本+国产| 日本在线免费播放| 偷拍国精产品久拍自产| 日韩不卡高清视频| 国产亚洲成年网址在线观看| 国产精品国产成人国产三级| 精品久久久噜噜噜久久| 尤物精品国产第一福利网站| 欧美日韩在线播放| 精品人人妻人人澡人人爽牛牛| 欧美视频精品免费覌看| 最新在线免费观看av的网站| 国产+免费+白浆| 99国产精品久久久蜜芽| 久久精品国产v日韩v亚洲| 日本中文字幕在线不卡视频一区| 成人国产精品日本在线观看| jiZZjiZZjiZZ亚洲熟女| 亚洲一区二区三区香蕉| 国产欧美久久一区二区| 国产精品成人免费视频网站| 久久精品免费成人| 日本道免费精品一区二区| 波多野结衣美女中文字幕视频| 超薄丝袜足j好爽在线观看| 99久久99久久精品免费看蜜桃| 国产免费不卡av黄色一级片| 娇妻被朋友日出白浆| 成人精品综合免费视频| 香蕉精品视频在线观看| 亚洲国产99精品国自产拍| 天堂久久久久va久久久久| 成人做爰A片免费播放乱码| 91偷自产一区二区三区精| 精品伊人久久久99热这里只| 欧美亚洲人成在线观看网站| 4k超清JAV无码| 国产女人在线观看| 24小时日本mv在线视频| 在线亚洲专区高清中文字幕| 免费在线播放av| 91在线/一区二区三区| 精品+国产+白浆| 国产区又黄又硬高潮的视频| 日韩区一区二区三区视频 | 四虎成人精品永久网站| 亚洲国产精品久久一线app| 午夜福利精品kkk在线| 欧美一级视频在线观看三级 | 国精产品乱码视频一区二区| 欧美一区二区三区人妖视频| 18+男同+日韩毛片| 在线视频免费观看一区| 欧美视频网站www色| 狠狠cao日日穞夜夜穞av| 国产精品中文字幕日韩精品| 亚洲免费人成网站在线观看| 巨爆乳肉感一区二区三区| 小草社区视频在线观看| 久久久久亚洲精品国产日韩精品| 波多野结衣黑人149分钟| 欧美孕妇孕交xxx| 欧美jizzhd精品欧美18| 国产精品三级赵丽颖| 自在自线亚洲а∨天堂在线| 出轨人妻毛片一级| 在线观看麻豆国产成人av在线播放| 天堂在线免费观看视频www| 久久视频这里只精品| 男女污在线亚洲午夜视频| 一个人看的国产精品视频| 美女视频网站在线观看污| 9.1+成人+看片| 国产高潮女主播视频一区| 亚洲精品国产专区91在线 | 日韩人妻无码精品专区906188| 狠狠色狠狠色合久久伊人| 亚洲欧美日韩中文字幕一区二区| av网站高清在线免费观看| 亚洲视频一区二区在线看| 国产成人啪精品视频免费网页| 亚洲AV无码片一区二区三区| 中国猛少妇色xxxxx| 国产精品国产a级| 国产探花视频在线观看网址| 日韩.国产.欧美在线字幕| 337P粉嫩大胆噜噜噜55569| 天堂а√在线中文在线新版| 国产美女视频精品黄频免费观看| 亚洲欧美中文字幕手机在线观看| 自拍偷拍亚洲色图日韩欧美| 91在线91拍拍在线91| 五月综合激情婷婷六月色窝| 春色校园亚洲愉拍自拍| 亚洲色18禁成人网站www| www.欧美在线观看| 日韩乱码在线观看免费视频网站| 亚洲综合欧美精品一区二区| 中文字幕++中文字幕明步| 成人做爰黄A片免费看陈冠希| 丰满大乳班主任趴下让我玩视频| 亚洲丝袜制服诱惑第一区二区| av动漫在线观看一区二区| 深夜激情18禁亚洲蜜臀av| 一区二区三区四区欧美极品| 91精品国产免费久久久久久| 亚洲中文字幕无码爆乳AV| 最近更新中文字幕2019视频| 无码人妻一区二区三区筱田优| 青青草+深夜福利+免费观看| 人人妻天天爽夜夜爽精品视频| 国产精品一区二区av片| 久久精品国产精品亚洲艾草网 | 欧美日韩成人在线免费观看| 午夜乱码爽中文一区二区| 人人超人人超碰超国产97超碰| 国产一区二区不卡在线看| 成人小视频免费看| 精品国产91久久久| 亚洲国产日韩欧美愉拍精品| 精品欧美在线观看视频二区| 又爽又色禁片1000视频免费看| 国产伦子伦一级A片免费看小说| 欧美大片免费观看网址| 欧美+国产+韩国| 亚洲国产精品久久久毛片| 国产精品成人免费视频一区二区| 新一级三级片国语版| 91久久精品国产| 17c.com喷水少妇| 国产日本久久久久久久久婷婷| 亚洲a∨精品一区二区三区| 亚洲欧美综合色视频播放| 亚洲日本中文字幕在线四区| 欧美三级在线播放| 午夜福利理论片高清在线| 少妇又色又紧又爽又高潮| 亚洲欧美成人一区二区三区| 亚洲欧洲成人精品av97 | 欧美精品v欧洲高清视频在线观看| 亚洲a∨大乳天堂在线| 影音先锋+无码高清| 蜜桃臀久久久蜜桃臀久久久蜜桃臀| 91这里只有精品| 无码综合天天久久综合网| 国产精品久久久精品三级18禁| 欧美黄色免费视频| 国产成人精品综合| 亚洲国产精品久久又爽av| 丁香花小说手机在线观看免费| 久久久久影院美女国产主播| 国产精一品亚洲二区在线播放| 国产精品久久久久久av福利| 黄片久久久久久久黄片久久| 婷婷久久精品国产色蜜蜜麻豆| 亚洲国产高清久久久久久久久 | 国产亚洲精品a久久77777| 亚洲日本高清成人aⅴ片| 精品国产成人亚洲午夜福利| 成人在线免费高清视频| 亚洲熟妇无码一区二区三区| 日本一区二区三区四区在线| 国产在线麻豆在拍91精品| 久久亚洲国产五月综合网| 四十路の完熟豊満无码| 99国产热精品主播在线观看| 亚洲五月丁香综合视频| 大粗鳮巴征服女教师| 亚洲欧洲国产成人综合在线观看| 亚洲+日韩一区二区| 屁屁国产第一页草草影院| 欧美久久国产精品| 巨乳童颜+影音先锋| 亚洲免费在线观看| 青青草国产在线视频综合| 国精产品99永久一区一区| 老牛影院在线观看免费下载电视剧| 一区精品视频在线观看免费| www.美色吧.com| 中文字幕在线不卡黄色a| 亚洲成aⅴ人在线视频| 成人动漫视频在线观看免费高清 | 干淫语对白骚妇视频| 亚洲精品成人天堂一二三| 黄色一级在线视频| 91偷自产一区二区三区精| 久久精品亚洲一区二区三区浴池| 亚洲日韩久久综合中文字幕| 淫臀艳妇(全)王雪琴| 久久久久亚洲精品| 五月天婷婷缴情五月免费观看| 国产精品成人**免费视频| 国产在线观看mv免费全集电视剧大全| 国产亚洲一卡2卡3卡4卡网站| 国产一区二区av在线免费观看| 久久久久久亚洲精品专区| 免费在线观看av| 视频一区二区中文字幕在线| fulao2官网下载国内载点破解| 欧美日韩亚洲国产九色91| 狠狠色噜噜狠狠狠狠2022| www国产+欧美| 老熟妇乱子交视频一区| 亚洲+国产+专区| 日本高清视频一区二区三区| www国产精品视频看看| 300部大龄熟乱视频| 午夜免费av啪啪噜噜| 黄色精品一区二区三区| 亚洲va欧美va天堂v国产综合| 极品s级大美女国产精品| 久久久久久综合网天天| 欧美巨大xxxx做受中文字幕| 成人做爰a片b站| 国产欧美日韩一区二区三区在线| 欧美日韩中文字幕在线xxx| 美女一区二区三区网av| 久久精品国产亚洲av热一区| 99久久有精品国产婷婷外女| 992成人做爰视频| 国产精品原创av| 国产av制服二区三区av系列| 色婷婷综合缴情综在线播放| 国产精品视频免费看人鲁| av观看免费在线| 98+亚洲+在线视频| 国产九色在线播放九色| 国产区77777777免费| 美女一区二区三区网av| 国产精品毛片一区二区在线看舒淇| 波多野结VS黑人无码| 亚洲精品免费在线观看视频| 亚洲国产精品尤物yw在线观看| 福利丝袜视频一区二区三区 | 日本熟妇无码一区二区| 亚洲手机在线人成网站| 人妻无码免费一区二区三区| 尤物97国产精品久久精品国产| 久久精品国产清高在天天线| 国产高清精品福利私拍国产| 伊人亚洲大杳蕉色无码| 日韩av无码久久一区二区| 99国产精品国产精品精品| 日本高清免费视频www色| 麻豆妓女爽爽一区二区三| 久久这里只有是精品23| 国产在线精品一区二区三区不卡| 91香蕉视频国产在线观看| 一本加勒比HEZYO无码| 两个人日本www免费版| 国产成人久久久77777| 97成人精品视频在线播放| 国产精品沙发午睡系列| 欧美一级一级一级| 成人做爰高潮片免费视频| 欧美日韩一区三区| 国产精品久久久久久久成人av| 天天综合天天做天天综合| 黑人好猛厉害爽受不了好大撑 | 亚洲欧美日韩国产成人一区| 成年女人免费视频| 亚洲精品乱码久久久久蜜桃| 91精品国产精品| 夜夜摸日日躁欧美视频| 青青草国产午夜精品| 91精品福利在线观看| 国产成人短视频在线观看| 成全在线观看免费完整| 久久久久人妻一区二区三区VR | 97久久久久人妻精品专区| 成人午夜在线播放| 国产女人叫床高潮视频在线观看| 久久久久国产视频| 三年片在线观看免费观看大全+下载| 玖玖无码中文字幕五月天| 国产美女视频一区二区三区| 日本无卡码高清免费v| 久久久精品小视频| 伊人久久大香线蕉av超碰演员 | 国产成人精品免费久久久久| 亚洲欧美日本中文字天堂 | 国产精品视频一区二区三区不看| 18+sexporn| 亚洲国产av一区二区污污污| 国产成人短视频在线观看| 人妻丰满熟妇av无码区App| 近親伦一区二区三区| 巨茎人妖videos另类| 国产精品三级在线波多野在线| 张津瑜国内精品www在线| 日韩69永久免费视频| 99视频在线精品免费观看6| 懂色av一区二区三区四区五区| 少妇av一区二区三区| 一区二区三区+视频+在线| 国产精品久久99精品毛片三a| 亚洲国产精品久久久久久久| 亚洲国产精品久久久久久久| 欧美日本一道本免费三区| 99久久免费精品国产免费…| 中文字幕一区二区在线看www| 日本精品中文字幕在线播放| 国产成人综合久久免费| 亚欧美日韩香蕉在线播放视频| 99国产精品久久久蜜芽| 国产传媒麻豆剧精品av| 无套熟女av呻吟在线观看| 国产最爽乱淫视频国语对白 | 国产精品二区三区四区五区| 久章草这里只有精品| 欧美日韩国产动漫在线| 日韩欧美精品v片免费看| 欧美黑人xxxx又粗又长| 窝窝影院免费观看高清电视剧| 国产亚洲视频中文字幕不卡| 日本一区午夜艳熟免费| 成人国产精品福利| 欧美日韩精品亚洲色图视频免费| 艳妇乳肉豪妇荡乳av无码福利| 日韩裸体人体欣赏pics | 国产91在线观看丝袜| 18+真人视频网站| 亚洲国产精品第一区二区| 久久中文字幕一區二區三區| 亚洲+成人+国产| 久久亚洲精品久久国产一区二区| 天堂av无码av一区二区三区| 欧美人牲交a欧美精区日韩| www.成人在线观看| gogo人体做爰大胆视频| www.免费在线不卡av| 精品国产又粗又猛又爽又黄| 欧美最猛黑人xxxxx猛交| 三级高清日本久久| 人妻精品一区二区三区| 亚洲AV色欲色欲WWW| 91久久国产综合精品女同国语 | 69人妻精品丰满熟女区| 国产精品女同一区二夜夜夜嗨| 国产男女无遮挡猛进猛出| 四虎影视国产精品永久在线 | 色五月五月丁香亚洲综合网| 重囗味sM群虐老女人| 成人a免费视频中文字幕| 亚洲天堂一二区免费播放| 国产成人a在线观看网站站| 天天综合亚洲综合网天天αⅴ| 亚洲精品国产精品乱码不99| 风流少妇野外精品视频| 视频一区国产第一页| 国产激情99精品久久一区二区 | 精品国产大片久久久久久久久| 亚洲日韩av无码美腿丝袜| 欧美一级黄色录像| 国产又粗又猛又黄又爽的视频| 在线人视频观看免费| 免费+国产+ktv| 欧美99热这里都是精品| 国产黄色片在线播放| 久久精品国产—精品国产| 99亚洲精品久久久99| 国产精品亚洲А∨天堂2020 | 91九色在线视频| 97久久精品国产一区二区三区| 骚虎成人免费99xx| 国产成人短视频在线观看| 四虎国产精品成人免费影视| 无码专区—va亚洲v专区vr| 国产精品乱子伦XXXX| 狠狠噜天天噜日日噜色综合| 韩国n号房视频+在线观看| 亚洲国产精品久久又爽av| 欧美亚洲国产精品久久高清| 精品国产av一区二区三区√| 国产免费一级淫片a级中文| 国产精品免费观看调教网| 九九热久久久99国产盗摄蜜臀| 亚洲国内精品自在线影院牛牛| 国产又粗又黄又硬又爽的毛片| 成人H动漫精品一区二区无码软件 摁着她干了好几次嫩B | 一道本av免费不卡播放| 国产高潮在线观看www| www国产亚洲精品久久麻豆| 1000部丰满熟女富婆| 国产精品久久久久久久久久不蜜月| 久久精品国产99久久6动漫| 国产又黄又爽又粗又猛的网站| 清纯粉嫩极品夜夜嗨av| 女人爽到喷水的视频免费看| 亚洲无线观看国产精品| 亚洲一区二区三区久久久| 欧美精品一区二区视频| 亚洲一级福利专区成人在线视频 | 全程露脸老熟妇双飞| 在线视频国产网址你懂的| 1000部拍拍视频18勿入| 国产欧美精品一区| 国产高清精品福利私拍国产| 欧美不卡一卡二卡三卡| 亚洲+日产+欧美| 一区二区在线免费视频| 日韩视频中文字幕精品偷拍| 狼伊人一级免费毛片| 亚洲Av无码一区二区三区天堂| 精品福利视频一区二区三区| 久久久久亚洲AV无码专不卡| 狠狠色狠狠人格综合| 三年片在线观看高清完整版| 天天综合在线观看| 亚洲精品国男人在线视频| 日韩一区二区三区在线网页 | 国产中文字幕免费在线观看| 四lll少妇BBBB槡BBBB| 国产成人久久久77777| 亚洲视频一区二区在线看| 2022av视频| 高潮毛片无遮挡高清免费视频网站| 午夜在线不卡精品国产| 黑丝+国产+在线视频| 亚洲成a人v在线蜜臀| 国产精品不卡av在线播放| 扒开粉嫩的小缝喷白浆| 丁香五月婷激情综合第九色| 中文字幕+媚药+日韩精品| 成人精品视频在线观看不卡| 欧美日韩一区二区三区视频播放 | 国产啊v在线观看| 亚洲第一成年免费网站| 亚洲综合色自拍一区| 欧美专区日韩视频人妻| 日本老头吮乳吃奶视频| 福利在线视频导航| 中日韩国产高清在线观看| 天堂在线www天堂在线| 麻豆果冻传媒精品国产苹果| 久久国产精品——国产精品| 国产精品一区二区av在线| 日本入室强伦轩人妻HD| 亚洲激情av在线| 亚洲精品国产综合99久久夜夜嗨 | 成人无码一区二区三区网站| 强行18分钟处破痛哭MJ| 清纯唯美一区二区三区| 九九久久国产一区二区三区| 精品国产综合久久久久 | 亚洲日本乱码一区二区产线一∨| 国产精品亚洲аv久久| 中文字幕a片视频一区二区| 4438ⅹ亚洲全国最大色丁香| 最新在线免费观看av的网站| 中文字幕免费高清电视剧网站| 又大又紧又粉嫩18p少妇| 精品国际久久久久999波多野| 日本高清中文字幕一区二区三区| 97免费公开视频| 无遮挡国产高潮视频免费观看| 久久精品麻豆一区二区三区美女 | 一区二区不卡免费视频| 国产xxxxx在线观看免费| gogogo高清在线播放免费观看| 欧美精品v欧洲高清视频在线观看| 国产人妻精品久久久久野外| 一区二区午夜福利在线看| 欧美一区二区三区在线| 五月丁香综合激情| 激情综合五月丁香亚洲| 国产永久免费高清在线| 亚洲AV午夜精品无码专区 | 日本乱妇乱子视频| 欧美丰满肥婆videos| 内射白浆一区二区在线观看 | 美足+丝袜+影音先锋| 射进来av影视网| 亚洲午夜久久久影院| 3344国产精品免费看| 国产精品好好热av在线观看| 蜜臀午夜精品视频在线观看 | 亚洲精品美女久久久久99| 国产免费又爽又色又粗视频| 国产欧亚州美日韩综合区| 亚洲一区在线免费| 黄色网页在线播放| 日本69精品久久久久999小说| 亚洲精品视频一二三区| 影音先锋大型av资源| 亚洲中文十区字幕在线播放| 国产亚洲精品久久www| 国产后入清纯学生妹| 夜夜爽夜夜叫夜夜高潮漏水 | 国产精品呻吟av久久高潮| 久久青青草原国产最新片完整| 日本大香蕉高清在线观看| 国产成人精品网站| 国产免费永久在线观看| 国产精品夜夜爽7777777| 二区视频在线观看| 精品人妻中文字幕在线| 国产午夜av在线一区二区三区| 精品97国产免费人成视频| 国产精品一级a级理论片在线| 亚洲中文字幕av一区二区三区| 18禁美女国产精品久久久久久| 丰满少妇凹凸BBBB是合法的吗| 国产精品xxx在线观看a | 91娇妻迎合黑人大属| 污污视频网站在线| 国产区日韩区欧美区| 亚洲婷婷综合色高清在线| 久久蜜桃资源一区二区老牛 | 国产精品久久久av免费不卡| 国产又爽又黄又粗又硬视频| 国产一级中文字幕在线观看| 国产精品成人免费视频一区二区| 东京热无码人妻系列综合网站| 国产午夜亚洲精品不卡下载| 在线观看片免费人成视频播放 | 东京热无码人妻系列综合网站| 国产精品久久久久av一区| 天天综合在线观看| 国产精品av一区| 亚欧美日韩香蕉在线播放视频 | 精品国产欧美一区二区三区不卡| 欧美成人看片一区二三区图文| 最新国产精品好看的精品| 狠狠精品久久久无码中文字幕| 国产欧美日韩一区二区三区在线| 超级黄18禁色惰网站| 亚洲色中文字幕无码av | 中文乱码字幕视频观看网站免费| 97精品一区二区视频在线播放| 99久久综合国产一区二区| 日本二区三区黄色视频网站| 日韩欧美一区二区在线视频| AV不卡在线永久免费观看| 国产日韩欧美综合精品一区二区| 日韩欧美精品人妻二区少妇 | 亚洲无AV在线中文字幕| 一区二区国产精品| 久久精品国产sm调教网站演员| 少妇精品偷拍高潮少妇小说| 午夜福利+麻豆+国产| 无套内谢波多野结衣| 精品国产亚洲av麻豆gif| 国产精品原创巨作av女教师 | luna精品videossex| 亚洲av片一区二区三区久久| 国产成人亚洲精品青草| 天堂网www最新版官网| www成人国产高清内射| xfplay+无码| 大地资源二中文在线官网| 亚洲精品7777777| 粗暴蹂躏av一区二区| 亚洲国产精品一区二区三区| 亚洲精品成人久久av| 精品欧美无人区乱码毛片| 麻豆精品国产专区在线观看| 91精品啪在线观看国产81旧版| 久久久久久久久久久av| 91在线喷水白浆| 欧美+日本+国产在线观看| 久久久青青久久国产精品| 日本真人做爰a片| 精品999久久久久久中文字幕| 国产又色又爽又刺激在线观看| 国产精品久久久久一区二区| 欧美+国产+综合| 亚洲av乱码国产精品色午麻豆| 777奇米四色成人影视色区| 亚洲免费午夜视频在线观看| 91精品视频免费观看| 中文字幕av久久爽一区| 国产精品成人**免费视频 | 在线观看免费人成视频色| 欧美肥臀大乳一区二区免费视频| 免费国产污网站在线观看不要卡 | 一区二区免费欧美| 久久精品国产v日韩v亚洲| 亚洲一卡二卡在线| 97在线播放免费观看全集电视剧| 在线观看高清国产色视频| 九九九久久久精品| 亚洲国产精品久久99人人更爽 | 国产又粗又猛又黄又爽的视频| 一级二级三级亚洲欧美大片 | 亚洲国产精品av在线播放| 一区二区在线精品| 欧美日韩亚洲tv不卡久久| 日本精品在线播放| 国产欧美日韩一区二区三区66| 亚洲va欧洲va国产va不卡| 在线bt天堂网.www最新版| 亚洲成AV人片一区二区密柚 | 男女一边摸一边做爽视频| 亚洲成在人线av品善网好看| 2021国产精品久久久久k8| 日本五十肥熟交尾| 欧美日韩国产三级| 亚洲一卡二卡三卡四卡在线看| 成人做爰黄A片色情泳衣| 美女一区二区三区网av| 国产精品久久久久久久无毒| 97se亚洲精品一区二区| 国产精品熟女亚洲av麻豆| 亚洲精品免费在线观看视频| 亚洲国产手机免费在线观看| 国产高清狼人香蕉在线| 精品亚洲国产成人av制服丝袜 | 综合久久婷婷丁香国产一区二区| 久久久亚洲国产美女国产盗摄| 国产最新精品自产在线播放| 久久亚洲精品中文字幕无男同| 东北高大丰满BBBBzBBB| 国产成人在线视频网站| 日本高清在线观看视频www| 卧室大战欧美肉丝丝袜| 久久久麻豆精品一区二区| 欧美不卡一卡二卡三卡| а√天堂+地址+在线| 午夜精品一区二区三区在线播放| 三年在线观看大全免费高清| 国产国产成人久久精品| 精品美女www爽爽爽在线| 日本免费一级特黄⊙大片欧美| 国产精品亚洲精品日韩动图| 婷婷在线视频观看| 少妇bbw搡bbbb搡bbbb| 精品一区二区三区无码免费直播| 国产免费看又黄又粗又硬| 久久久激情一区二区三区| 国产chinese中国xxxx| 真实乱子伦厨房A片| 东方aⅴ免费观看久久av| 国产麻豆91精品三级站| 一区二区在线免费| 新大地资源在线影视观看 | 国产乱淫av蜜臂片免费| 91中文字幕视频| 国产伦子伦一级A片免费看小说| 国产寡妇精品久久久久久| 亚洲精品在线观看丝袜制服| 日韩美女精品一区在线视频| 免费全部高h视频无码软件| 欧美日韩国产激情一区二区三区| 又粗又黑又大的吊av| 天天综合色天天综合色h| 99re视频在线| 91精品众筹嫩模在线私拍| 女同av女同一区二区三区| 午夜伦4480yy私人影院久久| 丰满少妇高潮在线观看| 在线观看精品日中文字幕| 双乳奶水饱满少妇呻吟免费看| 人人超碰91尤物精品国产| 亲密+磁力链接+下载| 久久无码人妻一区二区三区午夜 | 欧美日韩国产专区一区二区| 成人+国产+在线| 天海翼+无码+磁力| 成片在线看一区二区草莓| 强开小嫩苞一区二区三区网站| 一区二区精品视频大全在线播放| 中文字幕人成乱码熟人免费69| 亚洲色大成网站www看下面| 黄频视频在线观看| 亚洲国产中文字幕全部视频列表| 超碰cao12国产在线观看| 在线观看日韩中文字幕| 国产三级精品三级三级视频| 真实乱子伦厨房A片| 激情无码人妻又粗又大中国人| 日韩一级片中文字幕| 美女18禁一区二区三区视频| 久久精品国产乱子伦| 一卡二卡亚洲视频在线观看| 武则天被狂躁C到高潮| 无码人妻精品一区二区蜜桃网站| 国产美女久久久久久久久久久久| 亚洲综合激情五月色一区| 中字幕视频在线永久在线观看免费| 太骚了全程淫语!| 一级美国无码高清| 日韩中文在线播放| 无码人妻精品一区二区三区9厂| 精品国产亚洲av麻豆gif| 亚洲欧洲无码专区av| 日韩欧美在线不卡| 白嫩少妇无套内谢视频| 国产美女久久久久久久久久久久 | 亚洲日韩中文字幕在线播放| 大粗鳮巴征服尤物老师| 国产午夜夜伦鲁鲁片| 国产精品高潮呻吟久久久久久| 免费黄色片一区二区三区| 麻豆国产VA免费精品高清在线 | 主播福利视频一区二区三区| av动漫在线观看一区二区| 67194在线观看高清电视剧| 日韩免费码中文在线观看| 乱色熟女一区二区| 国产成av人片久青草影院| 欧美日韩在线视频播放| 波多野结衣视频一区二区| 少妇bbw搡bbbb搡bbbb| 免费+日本+国产| 免费在线观看午夜片网站| 欧美一区二区三区巨免费| 久久99热只有精品首页| 日韩无码中文字幕| 免费网站在线观看人数在哪里直播| 国产日韩av在线| 国产91勾搭技师精品| 国产亚洲在线观看| 黑人巨鞭大战欧美熟妇| 波多野结衣被多人伦轩| 欧洲一区二区成人| 成版人看片app私人影院| 337p大尺度啪啪人体午夜| 人人爽人人奭人人片AV| 国内精品美女a∨在线播放| 亚洲美女视频网站 | 久久精品aⅴ无码中文字字幕| 国产精品久久..4399| 中文无码乱人伦中文视频播放 | 久久精品人人做人人爽老司机| 人妻精品国产一区二区| 毛片tv网站无套内射tv网站| 国产成人精品一区二区在线观看| 国产内射一区二区xxx| 亚洲精品v欧洲精品v日韩精品| 国产成人在线视频网站| 中文在线字幕免费观看电视剧日剧| 国产一级婬片A片免费无成人黑豆| 午夜yy一区二区三区视频| 国产一区二区三区在线看麻豆| 亚洲精品成人天堂一二三 | 国产1024成人精品视频| 国产69精品久久久久久尤物 | 精品国产大片久久久久久久久 | 熟妇精品一区二区三区四区| 久久亚洲精品久久国产一区二区| 欧美成人高清视频a在线看| 欧美一级一级一级| 国产伦精品一区二区三区综合网| 91成人在线免费观看| 少妇人妻综合久久中文字幕| 自拍偷自拍亚洲精品10p| 亚洲va中文慕无码久久av| 久久人妻无码aⅴ毛片a片动图| 狠狠噜天天噜日日噜无码| 久久精品国产亚洲av热一区| 中文字幕人妻无码专区app| 国产精品久久久久久99人妻精品| 美女+人妻+日韩毛片| 国产黄片视频主播在线观看| 亚洲欧洲国产日韩精彩视频 | 国产精品国产精品国产专区蜜臀ah| 亚洲一卡二新区乱码绿踪林| 牛牛视频一区二区三区| 午夜免费理论片A无码 | 无码国产精品一区二区免费模式 | 国产+日韩+欧美熟女| 国产精品久久久久aaaa| 视频一区二区中文字幕在线| 国产美女精品中文网蜜芽宝贝| 日本不卡在线视频二区三区| A∨天堂精品视频| 1000部拍拍视频18勿入| 天天综合色天天综合色h| 中文天堂在线播放| 亚洲欧美另类成人综合图片| 亚洲中文字幕欧美日韩在线| 八十路で初撮り老熟妇中国| 天天看国91产在线精品福利桃色| 黄色一级视频在线观看| 欧美天堂一区二区三区| 大香蕉国产在线视频| 美女互摸视频一区二区三区| 久久亚洲私人国产精品| 亚洲精品一区三区三区在线观看| 国产精品一级AA毛片不收费| 97在线观看免费观看高清| 成人午夜高潮免费视频在线观看| 亚洲乱码在线卡一卡二卡新区豆瓣| 国产乱人激情h在线观看| 日本精品视频在线观看一区| 国产精品沙发午睡系列| www黄色网址com| 亚洲色图av在线| 国产日韩欧美亚洲一区二区三区| 888亚洲欧美国产va在线播放| 亚洲国产中文欧美日韩另类| 欧美日韩国产中文字幕在线播放 | 天天躁日日躁狠躁欧美| 91Porn人妻第一页| 国产在线视频一区二区三区| 最新中文字幕免费在线观看| 国产又色又爽无遮挡免费动态图 | 蜜臀av国内精品久久久| 欧美成人精品一区二区三区在线观看 | 911爆料在线吃瓜911资源 | 99久久综合国产一区二区| 91精品情国产情侣高潮对白文档 | 亚洲成在人网站av天堂| 肥熟日本五十六路BBW| 日韩熟妇中文色在线视频| 国产高清乱理伦片中文小说| 一本加勒比hezyo爆乳| 亚洲日韩欧洲无码av夜夜摸| 欧美一级黄色录像| 国产精品久久久久久影视不卡| 日本精品中文字幕在线播放 | 国产清纯美女高潮出白浆+色| 国产一区二区三区在线看麻豆| 美女18禁一区二区三区视频| 一区二区三区在线播放| 精品亚洲中文字幕东京热网站| 国产精品美女WWW爽爽爽视频| 婷婷激情五月av在线观看| 狠狠综合久久久久尤物丿 | 最新日韩中文字幕| 五月天天爽天天狠久久久综合| 亚洲精品7777777| 精品国产一级片在线观看| 午夜精品一区二区三区免费视频| 亚洲第一精品在线免费观看| 九色琪琪久久综合网天天| 欧美成人精品一区二区三区在线看| 九九影院在线观看免费最新电视剧| 2014av天堂无码一区| 老汉tv永久视频福利在线观看 | 亚洲一区二区在线精品| 在线亚洲精品国产二区图片欧美| 欧美成人Ⅴ片在线观看| 中文字幕av久久爽一区| 欧美成人一区在线| 国产又黄又粗无遮挡全黄色视频| 国产精品一国产精品一k频道| 国产菊眼屁股交3| 国产精品一区二区av片| 久久久久久a亚洲欧洲av冫| 99国内精品久久久久久久| 你懂的网址亚洲精品在线观看| a在线观看免费网站大全| 亚洲欧美日韩国产成人一区 | 日本地区不卡高清更新二区| 亚洲国内精品av五月天| 亚洲亚洲人成网站77777| 国产激情99精品久久一区二区| 欧美亚洲中文精品高清字幕| 国产欧美日韩一区二区刘玥| 日韩区一区二区三区视频| 日本xxxxx片免费观看19| 中国美女毛片视频免费看| 亚洲成人国产精品| аⅴ天堂中文在线| 日日碰狠狠添天天爽超碰97| 精品999久久久久久中文字幕| 成片在线看一区二区草莓| 在线观看视频亚洲免费视频| 久久99精品国产麻豆婷婷| 久久精品国产久精国产思思!| 亚洲色欲色欲欲www在线| 色久综合影视天天综合网| 久久精品国产萌白酱一区二区| 成人精品视频中文字幕版| 中文字幕在线影视| 免费网站在线观看人数在哪里直播| 亚洲一区天堂九一| 97se亚洲精品一区二区| 欧美一区二区三区四区91| 青青国产在线视频| 在线观看日韩欧美综合黄片| 国产91精品久久久久91黄色| 欧美日韩中文国产| 亚洲成色777777女色窝| 丁香五月激情综合亚洲| 毛片网站免费在线观看| 亚洲欧洲一区二区福利片| 天干夜天干夜天天免费视频| 五月天久久久久久九一站片| 99久久久精品国产美女| 日本高清色本在线WWW| 毛片在线免费播放| 国产一卡2卡3卡四卡精品国色无边| 17c一.起草看片| 岛国片人妻三上悠亚| 亚洲国产日韩成人a在线欧美| 高清国产下药迷倒白嫩| 91精品啪在线观看国产81旧版| 天堂网一区二区在线播放| 国产乱子精品免费视观看| 色婷婷香蕉在线一区| 亚洲综合区图片小说区| 国产又黄无遮挡在线观看| 视频一区视频二区制服丝袜| 国产精品久久久久久久久久妇女| 国产精品卡一卡二卡三| 99国产综合精品| 国产三级国产三级国产| 国内精品自线一区二区三区| 久久品道一品道久久精品| 久久久久国产精品免费免费搜索| 久久老熟女一区二区福利蜜臀 | 国产+亚洲+美女| 日韩欧美精品一区| 久久久久久经典精品欧美激情 | 日本熟妇色XXXXX日本免费看| 少妇一区二区三区无码视频| 青青草97国产精品免费观看 | 日本一区二区三区黄色片v | 奶大丰满一伦一视一视| 国产在线+123| 国内精品久久久久久网站| 日韩在线视频观看免费网站| 久久视频免费在线观看| 五月天婷婷缴情五月免费观看| 亚洲国产中文字幕全部视频列表| 国产视频一区二区在线免费观看 | 国产亚州精品女人久久久久久| 国产不卡在线播放| 91精品国产综合久久久久| 亚洲欧美另类在线视频| 久久久www成人免费看片| 2019年国产精品看视频| 在线播放国产精品| 国产精品露脸国语对白| 亚洲一区二区精彩视频在线观看| 四川寡妇搡BBB爽爽爽| 亚洲+精品+欧美| 短篇肉r车多肉r文| 亚洲一区福利视频| 无套熟女av呻吟在线观看| 国产老师开裆丝袜喷水视频| 国产乱淫av蜜臂片免费| 高清国产一区二区| 日韩精品久久久久久久的张开腿让| 中文字幕亚洲精品无码| 高清国产一区二区三区四区五区| 欧美韩国一区二区| 精品久久久久久中文无码| 国产精品久久久久久婷婷| 99久久国产自偷自偷免费一区| 激情午夜福利在线视频观看| 亚洲精品一区久久久久| 亚洲Av永久无码精品尤物 | 国产午夜精品久久久久免| 亚洲国产精品久久久毛片| 中文字幕一区二区三区乱码在线| 人妻有码精品视频在线| 日日做夜夜爽毛片麻豆| 麻豆国产丝袜白领秘书在线观看| 国产啊v在线观看| 无码+成人+种子下载| 香蕉视频在线播放| 国产美女内射啊啊高潮在线网页| 国产亲妺妺xXXX888869| 国产高清a视频在线观看| 99久久免费精品国产免费…| 看全黄色大色女爽一次免费久久| 久久天天躁狠狠躁夜夜爽| 亚洲乱码国产乱码精品精小说| 大桥未久+高清无码| 粉嫩小泬无遮挡久久久久久| 亚洲精品自产拍在线观看动漫 | 欧美黄视频在线观看| 国产又黄又大视频| 亚洲色精品三区二区一区| 亚洲欧美综合精品另类天天更新 | 日日AV色欲香天天综合网| 国产精品一区二区三区肉骚| 亚洲va欧洲va国产va不卡| 久久偷看各类wc女厕嘘嘘| 无码人妻精品一区二区蜜桃网站| 精品成人在线一区二区| 粉嫩av蜜桃av蜜臀av| 亚洲桃色在线播放国产精品| 欧美猛少妇色xxxxx猛叫| 中美日韩亚洲中文专区| 精品欧洲AV无码喷奶水| 欧美精品三级黄片| 试镜床戏(巨肉高h)| 国产精品女同一区二区三区| 久久精品国产精品青草app| 中文久久乱码一区二区| va亚洲va天堂va视频在线| 亚洲av无码一区二区乱子仑| 欧美变态另类刺激| 久久婷婷五月综合色99啪| 亚洲中文字幕av一区二区三区| 国产对白叫床清晰在线播放图片| 精品国产成人a区在线观看| 国产av一区二区三区天美| 18成人福利网站在线观看| 亚洲综合另类小说色区一| 高潮毛片无遮挡高清免费视频网站| 欧美老妇bbwhd| 精品亚洲一区二区三区在线观看| 亚洲一区二区三区国产| 亚洲三级在线观看| 久热这里只有精品99国产6| 国产亚洲久久久久久久| 在厨房拨开内裤进入毛片| 国产黄片av一区二区三区四区| 91视频最新入口| 五月婷婷在线视频观看| 80s+毛片+免费观看| 美女很骚的视频网站国产| 久久精品aⅴ无码中文字字幕| 美足+丝袜+影音先锋| 巨茎与艳妇麻麻啪啪漫画| 新欧美ssss亚洲综合| 丁香花小说手机在线观看免费| 一区二区三区日韩亚洲中文视频| 亚洲一区久久精品东京热| 国产艳妇av在线| 日韩欧美中文字幕在线视频四区| 亚洲国产欧美一区二区三区丁香婷 | 久久精品99精品国高潮| 亚洲日韩精品区二区av | 色婷婷一区二区三区四区| 巨乳童颜+影音先锋| AV剧情麻豆映画国产在线观看| av成人在线免费观看| 国产美女内射啊啊高潮在线网页| 午夜久久久久久久久久一区二区| 法国色情巜卧室肉欲| 精品国产麻豆免费人成网站| 女人高潮抽搐潮喷视频开腿| 最新精品国产av片国产| 国产免费午夜福利不卡片在线| 黄页网站免费视频大全9| 91av免费在线观看| 日韩乱码在线观看免费视频网站| 国产精品三级av三级av三级| 又粗又长又硬义又黄又爽| 日日AV色欲香天天综合网| 在线精品亚洲观看不卡欧| 白浆+国产+高潮| 日本乱子伦一区二区三区| 无码+自拍+磁力链接| 在线视频欧美亚洲| 六十路の完熟豊満无码| 污污视频网站在线免费观看| 校园春色亚洲色图| 精品久久国产字幕高潮| 国产99精品最新在线播放| 橘梨纱连续高潮在线观看| 欧美国产激情一区二区三区 | av在线国产精品中文字幕| 中文字幕aⅴ在线视频| 自拍偷亚洲产在线观看| 亚洲成Av人在线观看网站| 日日摸夜夜添夜夜添无码免费视频| 亚洲日韩精品一区二区三区无码| 40岁成熟女人牲交片| 北条麻妃大战黑人无码| 天天狠天天天天透在线| 亚洲中文字幕欧美日韩在线| 久热这里只有精品99在线观看| 国产伦精品一区二区三区妓女原神| 欧洲av成本人在线观看免费 | 中文亚洲精品字幕在线观看| 亚洲天堂av在线免费观看| 高清日韩精品一在线观看视频| 亚洲+国产+图片| 人小说网站在线观看| 7878成人国产在线观看| 国产成人精品久久二区二区四季| 男人下部进女人下部视频| 99久久国产综合精品五月天喷水| 日韩+国产+欧美成人| 97中文字幕在线观看| 国产精品欧美一区二区三区奶水| 黄金网站app大全免费| 川上优av一区二区线观看| 久久久久久久岛国免费网站| 精品一区二区三人妻视频 | 中文字幕日本亚洲欧美不卡| 亚洲一卡二新区乱码绿踪林| 人妻ⅰapanfreehd人妻| 毛片国产精品完整版| 亚洲国产成人久久精品大牛影视| 多人玩弄波多野结衣| 亚洲精品无码av专区最新| a级老太婆毛片老太婆毛片| 国产+精品+在线观看| 欧美三级欧美成人高清www| 狠狠色噜噜狠狠狠狠777米奇小说 狠狠综合久久av一区二区 | 97caoporn国产免费人人| 精品久久久久久久久久熟女| 人妻中文乱码在线网站| 久久国产精品久久w女人spa| 国产传媒在线播放| 人妻ⅰapanfreehd人妻| 免费+网站+国产| fulao2官网下载国内载点破解 | 久久久久久久福利国产一级 | 麻豆精品免费在线观看视频| 达达兔欧美午夜国产亚洲| 精品久久久久中文字幕app| 精品自拍亚洲一区在线| 深夜福利1区2区3区欧美| 美女主播一区二区不卡视频| 在线观看+www| 亚洲熟妇久久国产精品| 亚洲日韩av无码美腿丝袜| 99久只有精品免费视频播放| 99热门精品一区二区三区无码| 欧美xxxxx做受vr91九色| 亚洲日韩国产精品第一页一区| 亚洲精品在线观看丝袜制服| 极品白嫩少妇无套内谢| 亚洲美女视频一区二区三区| 中文无码乱人伦中文视频播放| 中美日韩精品在线免费观看 | 色一乱一伦一图一区二区精品| 国产精品亚洲αv| 国产男生午夜福利免费网站| 另类国产ts人妖高潮系列视频| 伊人精品成人久久综合| 国产精品白嫩极品美女视频| 国产淫语对白说脏话aV| 一本色道久久HEZYO无码| 欧美日韩大香蕉岛国在线视频 | 日韩美女免费线视频| 欧美精品一区二区高清在线观看 | 黑人搡BBBBB搡BBBBB| 亚洲情a成黄在线观看动| 激情文学午夜视频在线观看| 国产亲伦免费视频播放| 日本欧美国产一区二区三区| 中文字字幕在线中文乱| 久久亚洲精品国产精品| 亚洲爆乳www无码专区| 亚洲成av人片不卡无码| 东北老女高潮过瘾对话| 久章草这里只有精品| 亚洲三区在线观看无套内射| 日韩精品视频在线视频播放| 亚洲五月丁香综合视频| 免费在线观看av网站| 男人天堂视频网站| 成人免费视频播放| 久久精品欧美日韩| 麻豆一区二区99久久久久| 日本不卡视频一区二区三区| 久久天天躁狠狠躁夜夜2020一| 午夜理论欧美理论片| 精品欧美高清视频在线观看| 成人在线午夜视频| 中文区中文字幕免费看| 久久九九51精品国产免费看| 国产又黄又猛又粗又爽的a片动漫 国产精品99久久免费观看 | 人妻精品一区二区在线视频| 美女视频黄的全免费视频网站| 国产精品情侣熟女毛片对白看片| 国产成本人视频在线观看| 一区二区三区国产日韩欧美在线| 秋霞午夜鲁丝一区二区老狼| 99久久夜色精品国产网站| 综合色区无码一区| 国产日韩精品一区在线观看| 老色鬼久久亚洲av综合1| 亚洲高清国产av一二三区| 一本色道久久HEZYO无码| 在线播放极品尤物魔鬼身材| 一级黄色大片免费观看| 国产精品久久久区三区天天噜| 337p日本欧洲亚洲大胆| 亚洲综合中文字幕无线码| 日韩av免费观看一区二区三区| 【乱子伦】国产精品.| 国产+日韩+欧美熟女| 亚洲av色噜噜噜久久久女同| 国产裸体舞一区二区三区| 色88欧美日韩国产无线码| 无码av无码一区二区桃花岛| 野外少妇被弄到喷水在线观看| 48手+真人+无码| 成人做爰黄级a片免费看土方| av久久悠悠天堂影音网址| 另类重口特殊AV无码| 日韩又大又长又粗又硬又爽视频| 国产精品麻豆入口29| 国产在线观看99| 多乙亚洲国产中文综合| 青草av久久免费一区| 国产精品不卡av| 成人免费无码大片a毛片18| 日韩国产精品一区二区| 国产69久久久欧美一级| 亚洲欧洲精品成人| 久久免费国产精品1| 成人国产一区二区三区精品不卡| 极品av麻豆国产在线观看| 99久久免费精品国产72精品九九| 国内女人喷潮完整视频| 精品一区二区三区无码免费直播| 網友分享色婷婷色99国产综合精品心得| h狠狠躁死你h八十年代| 丁香花影院在线观看免费播放电视剧| 无码色情巜肉欲办公室3| 亚洲AV永久无码精品成人| 污污视频网站在线| 色情无码一区二区三区| 中文字幕日韩精品久久| 日韩三级伦理片色呦呦中文字幕| 色婷婷av一区二区| 久久视频免费在线观看| 最新东京热+中文字幕| 国产又黄又粗又爽又免费| 中文字幕欧美高清在线观看| 亚洲人成人7777在线播放| 免费黄色小视频在线观看| av在线播放+亚洲+不卡| 成人麻豆精品国产自产在线观看| 日韩人妻偷拍一区二区三区| 天堂av无码大芭蕉伊人av孕妇| 高清不卡亚洲日韩av在线| 夜夜爽一区二区三区| 乱码精品国产成人观看免费| 欧美又大又黄又粗高潮免费| 日韩v欧美v中文在线| 欧美三级在线高清不卡| 你懂的网址亚洲精品在线观看| 蜜臀欧美日韩一区二区三区精品| 国产精品青草综合久久久久99| 久9久9精品视频在线观看| 国产精品偷伦费观看一次| 中国猛少妇色xxxxx| 18禁国产精品久久久久久网站| 伊人精品成人久久综合| 狠狠躁夜夜躁人人爽天天开心婷婷 | 成av免费大片黄在线观看| 日韩毛片+18+成人网| 一区二区三区在线观看精| 国产免费午夜福利不卡片在线| 亚洲s码欧洲m吗国产精品| 日本丰满人妻久久久久久| 国产成人福利美女观看视频| 国产午夜精品一区二区芒果视频| 青草久久久国产线免观| 日本一卡二卡不卡视频查询| 亚洲欧美激情五月在线观看| 91社区在线高清| 最新久久99国产亚洲高清观看首页视频| 香蕉视频在线观看国产婷婷| 亚洲欧洲日韩综合| 色678黄网全部免费| av一区二区在线播放| 最新东京热+中文字幕| 嗯啊嗯啊在线观看| 亚洲国产婷婷香蕉久久久久久| 99久久久99久久91熟女| 在线日本国产成人免费不卡| 成人+国产+欧美| 亚洲一区二区观看| 又粗又硬又黄的视频国产| 亚洲乱亚洲乱妇无码麻豆| 少妇无码一区二区三区| 亚洲一区二区天堂| 西西444WWW无码视频软件| 欧美精品久久久久久久久久| 久久综合精品亚洲| 在线视频中文字幕一区二区三区| 国产福利高颜值在线观看| 久久99精品久久久久久园产越南| 国产亚洲视频中文字幕不卡| 国产免码va在线观看免费| 国产黄色福利网站| 欧美日韩免费不卡激情在线视频| 在线最新av免费费观看| 国产av天堂一区二区三区粉嫩| 亚洲精品久久久久58| 欧美一区二区三区人妖视频| 国产三级不卡在线观看视频| 国产极品美女高潮无套久久| 久久精品国产第一区| 日本国产精品亚洲专区观看| 91dizhi永久地址最新| 日韩丰满少妇无吗视频激情内射 | 97国产爽爽爽久久久| 美女一区二区三区视频在线| 亚洲高清码在线精品av| 亚洲黄色一区大陆av剧情| 亚洲精品av中文字幕在线| 免费观看无遮挡www的视频午夜| 麻豆国产网站入口 | 国产婷婷vvvv激情久| 和闺蜜野外交换做爰的注意事项| 国产成人久久精品流白浆| 免费+国产+麻豆| 欧美一区二区日韩| 欧美在线观看免费播放视频| 国产精品线在线精品| 国产亚洲精品久久久久久床戏 | 大地资源二中文在线观看下载| 国产又粗又爽又猛又大的动漫片| 久久91精品国产91久久蜜月| 手机av在线免费| 在线播放av网站| 亚洲欧美国产综被窝蜜臀| 东方aⅴ免费观看久久av| 好吊妞国产欧美日韩免费观看 | 中文字幕+中文在线| 国产精品高潮呻吟久久久久久 | 久久国产亚洲高清观看| 69国产成人精品二区| 亚洲国产天堂视频在线播放| 国产+免费+自拍| 伊在人亚洲香蕉精品区| 偷拍亚洲综合20p| 女人18片毛片90分钟| www成人在线观看| 亚洲欧洲国产成人综合在线| 日韩一区欧美一区中文字幕| 成人精品一区二区户外勾搭野战| 国产在线观看精品一区二区三区| 日韩+欧美+高潮| 欧美成人精品一级乱黄| 久久久久久经典精品欧美激情| 亚洲伊人网精品在线观看| 亚洲精品久久久久久婷婷| 天天躁日日躁狠狠躁800凹凸 | 国产又黄又爽又色视频免视频| 国产+日产+欧美视频| 亚洲综合中文字幕无线码| 日本亲子乱子伦xxxx60岁 | 国产精品免费看久久久久久| gogogo日本免费观看电视剧第17集| 久久天天躁夜夜躁狠狠85台湾 | 五月丁香六月综合缴情在线| 丰满女人无套内谢| 国产欧美日韩高清在线不卡| 人妻无码一区二区19p| 中国美女毛片视频免费看| 雯雯的肉奴生活1—48| 天天+来吧综合+亚洲| 亚洲国产成人综合| 欧美成人高清视频a在线看| 国产成人精品亚洲午夜| 国产日韩欧美区二区三区四区| 岳把我添高潮了A片m3u8| 精品亚洲欧美自拍| 色五月五月丁香亚洲综合网| 精品国产乱码久久久久久88av| 亚洲Av无码一区二区三区天堂| 一本色道HEZYO无码专区| 视频+成人+在线| 无人码一区二区三区视频| 久久久噜噜噜久久熟女aa片| 久久综合久久自在自线精品自| 91麻豆精品国产自产在线91| 四虎影视精品永久免费久久久二| 五十路完熟豊満交尾| 可以免费观看的毛片| 牛牛视频一区二区三区| 日本xxxxx片免费观看19| 一区二区三区日韩欧美| 国产老师开裆丝袜喷水视频| 四虎国产精品永久免费网址| 日韩精品久久久久久希崎杰西卡| 日韩在线亚洲欧美另类青青| 国产三级在线观看视频| 日本中文字幕中出在线| 中文字幕永久免费| 欧美日韩亚洲精品一区| 亚洲精品美女久久久久网站| 91精品国产91久久综合| 亚洲精品久久66国产高清| 天天躁日日躁aaaxxⅹ| 2021国产精品午夜久久| 亚洲欧洲无码一区二区三区| 日韩欧美中文字幕在线视频| 精品高潮白浆喷水| 亚洲国产99精品国自产拍 | 国产激情视频在线| 亚洲精品入口一区二区乱| 国产亚洲人成网站在线观看| 国产亚洲欧美日韩在线一区| 亚洲精品欧美日韩| 国产美女裸体丝袜喷水视频| 国产精品8888| 好爽…又高潮了毛片| 亚洲精品第一国产综合野| 在线观看+成人免费视频+不卡 | 97午夜理论片在线影院| 一本大道久久a久久综合婷婷| 国产精品免费视频观看| 天堂岛国av无码免费无禁网站 | 拍拍拍无挡免费视频| 国产亚洲欧美在线专区| 欧美日韩亚洲综合精品第一页| 日韩精品专区av无码| 久久精品国产亚洲精品| 午夜福利一区二区三区高清视频| 日韩69永久免费视频| 4k岛国精品午夜高清在线观看| 日韩一区二区三区视频| 91偷自产一区二区三区精| 欧美日本久久综合网站点击| 91女人18片女毛片60分钟| 妺妺窝WWW仙踪林粗大野| 亚洲精品无码AⅤ中文字幕蜜桃| 亚洲国产91福利在线播放| 欧美一区二区激情| 成在人线av无码免费看网站直播 | 青青草国产免费国产是公开| 999国产精品视频| 午夜免费福利视频| 亚洲熟妇AV一区二区三区| 顶级欧美熟妇xx| 玩弄少妇高潮喷水在线观看| 在线播放极品尤物魔鬼身材| 免费看又色又爽又黄的国产| 国产在线高清精品一区免费 | 亚洲系列中文字幕| 99久久精品无码一区二区三区 | 国产ae86亚洲福利入口| 国产免费不卡av在线播放| 欧美成人Ⅴ片在线观看| 日本欧美亚洲中文在线观看| 高清无码成人视频| 欧美国产一区二区三区小说| 91porny在线| 国产91精品一区二区麻豆观看| 亚洲综合色区中文字幕| 国产精品91手机在线观看| 99精品国产再热久久无毒不卡| 亚洲乱码国产乱码精品精男男 | 中文字幕一区二区三区5566| 一本色道久久精品| 手机在线免费观看毛片av| 日本乱偷互换人妻中文字幕| 亚洲国产欧美在线人成人| 久久久久国产精品人妻aⅴ网站 | 久久国产福利播放| 色一乱一伦一图一区二区精品| 香蕉视频1024| 亚洲另类国产精品中文字幕| 中文字幕久久精品无码| 亚洲愉拍99热成人精品热| 白嫩无码人妻丰满熟妇啪啪区百度| 成人三级视频在线观看一区二区| 欧美日韩大片中文字幕在线观看| 久久精品国产亚洲七七| 日韩中文字幕v亚洲中文字幕| 亚洲成人在线播放| 久久99精品久久久久久噜噜 | 亚洲欧洲成人a∨在线观看| 中文在线字幕免费观看电视剧日剧| 一本大道道久久综合av| 麻豆ā片免费观看在线看| 国产+jk制服+在线| 日韩av在线一区二区三区| 久久久成人精品av四区| 激情综合婷婷色五月蜜桃| 免费观看又色又爽又黄的崩锅| 全国最大成人免费视频| 午夜丰满极品美女A片| 九色在线观看视频| 亚洲依依成人精品| 久久精品国产亚洲aa级女大片| 在线精品亚洲一区二区动态图| 一本加勒比HEZYO无码| 国产又粗又猛又黄的免费视频| 久草在线免费福利| 国产在线观看欧美二区三区| 91视频国产一区| 免费+精品+在线看| 久久久久久久无码高潮| 中文字幕+乱码+中| 久久精品欧美一区二区| 国产成人av在线麻豆影院| 日本一区二区三区四区18| 日韩亚洲国产中文字幕欧美| 日韩免费在线播放一级黄片| 天堂中文在线8最新版地址| 亚洲a∨无码精品色午夜| 国产高潮在线观看www| 亚洲一卡二卡三卡四卡在线看| 欧美日韩国产高清一区二区三| 国产精品久久久久久久模特人妻| 欧美+日韩精品+另类图片| 丁香啪啪综合成人亚洲小说| 秋霞妓女影院在线播放| 99re6热视频这里只精品首页| 动漫成年美女h漫网站漫画| 成人av免费观看| 亚洲欧美日韩在线观看一区二区三区| 亚洲影院中文字幕| av亚洲产国偷v产偷v自拍| 日韩av无码久久一区二区| 国产精品h片在线播放 | 国产av亚洲aⅴ一区二区| 中文无码一区二区不卡AV| 婷婷色国产偷v国产偷v小说| 波多野结衣一二三区| 国产精品成人久久久久| 成人+动漫+日韩毛片| 亚洲国产精品av在线播放| 欧美视频一区二区三区福利| 无套内内射视频网站| 日韩一区二区视频| 亚洲精品免费在线观看视频| 国产精品无打码在线播放| 国产精品久久久天天影视香蕉| 久久老熟妇精品免费观看| 双乳奶水饱满少妇呻吟免费看| 国产又猛又粗又爽又黄91| 国产一区二区三区导航| 亚洲一区二区三区国产| 久久91精品国产91久久蜜月| 中文字幕av导航| 亚洲国产精品久久久久麻| 麻花星空天美mv免费观看电视剧| 日韩精品无码一本二本三本色| 疯狂欧美大伦交乱| 欧美日韩亚洲综合精品第一页| 麻豆精品国产专区在线观看| 欧美黑人xxxx又粗又长| 鲁大师影院在线观看| 18+韩国美女主播| 黄色成人av网站| 日韩在线观看只有精品视频| 久久午夜国产精品www忘忧草| 大波美女一级a久久午夜| 窝窝影院在线观看免费播放电视剧| 又黄又爽又色成人免费体验| 韩国做aj的视频大全| 国产黄色在线网站| 国产一区二区在线视频观看| 人人超碰91尤物精品国产| 成人午夜三级视频| 91国内精品久久久| 亚洲AV成人噜噜无码网站| 8888888888免费观看在线nba| 欧美综合在线观看视频| 日本免费一区高清观看| 欧美日韩亚洲精品成人片区| 国产精品丝袜一区二区三区| 亚洲+精品+无码视频| 国产成人综合久久免费| 美女黄页网站国产在线观看| 大地资源高清在线观看| 欧美视频在线观看一区| 国产一二三区精品亚洲美女 | 中文乱码字幕视频观看网站免费| 无码av中文一二三区| 国产偷人妻精品一区二区在线 | 亚洲综合伊人久久| 无码夜色一区二区三区| 久热中文字幕第一区二久| 欧美综合在线观看视频| 日本三级中文字幕在线观看| 美女成人亚洲黄色福利视频| 国产综合在线观看免费视频| 欧美一级特黄AAAAA片大水| 久久久久久久曰本精品免费看| 少妇精品久久久久www| 影音先锋+在线+国内| 一级做a爰片久久毛片潮喷妓| 欧美精品一区二区视频| 91精品国产综合久久精品图片| 青娱乐极品视觉盛宴av| 久久久这里只有精品10| 亚洲av乱码国产精品麻豆| 国产乱码一区二区三区观看 | 久久99国产精品黄色片| 免费看国产一级特黄aa友片| 极品+普通话+磁力链接| 天海翼精品久久久久中文字幕| 中文字幕综合在线分类| 日本福利视频一区| 久久人妻公开中文字幕| 欧美精品一区二区三区四区久| JLZZJLZZ亚洲女人19| 欧美自拍另类欧美综合图片区| 综合色区无码一区| 肉欲+中文字幕+迅雷| 亚洲一区二区三区久久久| 国产白嫩护士被弄高潮| av色欲无码人妻中文字幕| 色丁狠狠桃花久久综合网| 国产高清一区二区三区视频 | 色综合天天综合网国成人网| 无码国产精品一区二区免费模式| 国产女子爆操高潮免费视频| 国产免费观看高清电视剧在线观看 | 日韩精品中文字幕久久臀| 亚洲国产精品97久久无色| 无码精品人妻一区二区三区av| 久久国产午夜精品理论片| 国产大片黄在线观看| 日韩午夜激情视频| 亚洲精品av中文字幕在线在线| 久久国产福利播放| 91毛片在线观看| 亚洲国产日韩精品二三四区竹菊| 国产欧美日韩精品丝袜高跟鞋| 久久99久久99精品免观看粉嫩| 欧美黑人做爰爽爽爽 | 欧美视频在线观看完整版中文| 新大地资源在线影视观看| 美日韩熟女与少妇精品激情| 丰满成熟熟妇乱又伦精品 | 五月综合激情婷婷六月色窝| 亚洲欧洲国产日韩在线不卡| 国产成人精品视频国产| www.香蕉视频| 亚洲人成色77777在线观看大战 | av一区二区在线观看| 欧美又粗又大又硬久久久| 日韩av爽爽爽久久久久久| yjizz视频网| 波多野结衣被多人伦轩| 先锋+视频+国产| 中国美女毛片视频免费看| 制服师生中文字幕一区二区| 亚洲成a人片在线观看无遮挡| 亚洲va中文字幕不卡无码| 亚洲精品美女久久久久99| 亚洲第一综合网站| 极品少妇伦理一区二区| 91中文字幕在线视频| 日本道精品一区二区三区| аⅴ天堂中文在线| 影音先锋+剧情+女仆| 亚洲人妻av理论琪琪在线| 青娱乐精品视频在线观看| 国产一级av一区二区在线| 日本三级欧美三级人妇视频黑白配| 色一情一乱一乱一区免费网站 | 国产欧美日韩一区二区三区在线| 欧美成人精品一区二区三区在线看| 九色手机在线视频播放| 久久国语精品三级亚洲一二| 另类+女同+影音先锋| 国产人成视频免费在线观看| 国语精品自产拍在线观看网站| 精品国产自在在线午夜精品 | 国产福利一区二区三区在线视频| 中文字幕++中文字幕明步| 亚洲国产中文字幕全部视频列表| www887色视频免费| 色婷婷一区二区三区四区| 国产乱人激情h在线观看| 精品免费产品日亚韩二区| 亚洲高清在线观看一区二区三区| 国产精品一区二区av片| 1000部羞羞视频在线看视频 | 国产午夜精品18| 久久国产精品——国产精品 | 在线亚洲精品国产成人av剧情 | 亚洲国产福利一区二区三区| 999精品视频在这里| 美女视频网站在线观看污| 麻豆国产av一区二区三区| 亚洲va欧洲va国产va不卡| 337p日本大胆欧久久| 大战丰满大白屁股女人| 2020中文字字幕在线不卡| 玩弄少妇高潮喷水在线观看 | 亚洲av成人一区国产精品一 | 男人的天堂免费视频| 日本内射精品一区二区视频| 欧美一区二区三区在线| 久久久久久亚洲精品专区| 国产又黄又猛又粗又爽的a片动漫| 四虎影视无码永久免费| 国产少女免费观看电视剧| 91av免费在线观看| 97青草超碰久久国内精品91| 国产探花视频在线观看网址| 国产成在线观看免费视频密| 国语自产拍无码精品视频| 午夜精品福利免费在线观看| 国产又爽又猛又粗的视频a片| 韩国真做片在线观看国产初高中生videos| 欧美日韩激情在线观看免费 | 超碰在线最新地址| 696息子精品一区| 成人免费视频国产免费麻豆| 国产又黄又大视频| 隔着超薄丝袜进入上司| 日本极品丰满ⅹxxxhd| 先锋影音+中文字幕| 久久精品国产一区二区三区 | 亚洲国产日韩欧美综合另类bd| 欧洲vodafonewifi巨大动漫| 中文国产日韩精品av片| 九九热播视频三级香蕉黄网| 中文字幕在线观看国产精品| 国产一区日韩二区欧美三区| 午夜免费观看体验区入口av| 无套内内射视频网站| 精精国产欧美一区二区三区| 国产精品美女久久久久久久久| 亚洲AV成人片无码网| 国产精品美女乱子伦高| 亚洲高清在线视频| 一级特黄aa大片免费播放| 大地二资源网高清免费播放| 久久se精品一区二区| 欧美中亚洲中文日韩| 亚洲国产成人精品女人久久久逼| www.欧美精品| 亚洲成人日韩高清在线观看| 国产精品视频男人的天堂| 免费av大全网站在线观看| 99re在线观看视频在线观| 国产av亚洲aⅴ一区二区| 亚洲免费网站观看视频| 久久久久久人妻中文字幕| 国产主播户外勾搭人xx| 国产精品熟女亚洲av麻豆| 国产高清在线不卡| 亚洲国产手机免费在线观看 | 强奷漂亮少妇高潮麻豆| 亚洲精品久久久久中文第一幕| 国产+欧美+日本在线观看| 天天综合色天天综合色h| 辜莞允+无码+视频下载| xxxxhd欧美| 一个人看的视频www中文字幕 | 欧美日韩亚洲成人| 国产女精品视频网站免费| 成全在线观看免费完整| 天堂aⅴ无码一区二区三区| 国产精品欧美一区二区三区奶水| 亚洲国产精品+嫩草影院+久久| 无码人妻少妇久久中文字幕蜜桃| 国产老头和老太xxxx视频| 嫩BBB槡BBBB槡BBBB18| 一卡二卡三卡视频| 国产老头和老太xxxx视频| 一级A片60分钟免费看| 日韩一区免费视频| 一区二区三区四区欧美极品| av久久悠悠天堂影音网址| 伊人久久大香线焦av综合影院| 影音先锋+拘束+高潮| 邪恶肉肉全彩色无遮盖| 人妻无码久久精品人妻| TokyoKoT大交乱| 乱人伦中文视频在线观看| 精品在线观看一区| 黑人巨大精品欧美视频一区| 中国熟妇XXXX18| 高清国产一区二区三区四区五区 | 秋霞无码久久一区二区| 成人av婷婷一区二区三区| 2020最新无码片中文字幕| 日本一区二区三区视频在线观看| 国产+高潮+在线观看| 久久aⅴ人妻少妇嫩草影院| 一本色道久久综合亚州精品蜜桃| 国产的av在线免费观看| 国产精品黄日韩成人黄亚洲| 成人乱淫av日日摸夜夜爽节目 | 欧美日韩国产动漫在线| 亚洲精品无码久久不卡| 天天天天做夜夜夜做| 太骚了全程淫语!| 少妇荡乳情欲办公室毛片一区二区| 99pao在线视频国产| 98av精品一区二区三区 | 欧美+日韩+在线高清| 亚洲色大成网站www看下面| 少妇伦子伦精品无吗在线观看| 欧美高清在线免费观看视频| 国产一区二区三区欧美在线| 国产精品成熟老妇女| 国产情侣在线播放| 四虎影视永久免费观看在线| 亚洲天堂成人在线观看| 久久99精品久久久久久清纯| www.四虎色情.com| poronovideos黑人极品| 国产做受高潮漫动| 亚洲国产精品av在线播放| 日韩欧美中文字幕一区二区| 99精品久久久久久琪琪| 爆乳亚洲一区二区'| 日本在线一区二区三区欧美| 免费视频www在线观看网站| 无码av永久免费专区麻豆| 精品国产成人在线一区二区| juliaann一区二区三区| 下岗美妇的肉唇1一7章视频| 国产精品久久久久久免费播放| 日本无乱码高清在线观看| 女人做爰高潮全黄| 欧美成人一区二免费视频| 精选一区二区三区免费在线观看| 在线观看黄片免费入口不卡| 粗大猛烈进出高潮视频免费看| 国产精品入口网站7777| 夜夜嗨人妻av一区二区三区| 影音先锋熟女人妻| 高潮+白浆+在线观看| 亚洲欧美日韩高清一区| 久久综合九色欧美婷婷| 中文字幕永久视频| 久久婷婷丁香七月色综合| 日韩国产精品视频| 1024国产成人精品视频| 日韩国产在线观看不卡免费 | 成人午夜片免费在线观看 | 大地资源二中文在线观看下载| 大家可以在这里国产一级淫片a视频免费观看 | 日韩在线中文字幕| 中文字幕有码免费在线观看| japan丰满人妻videoshd高清| 国产+免费+麻豆| 日本欧美久久久久免费播放网| 69xxxxx中国女人| 亚洲国产专区校园欧美| 成人美女视频在线观看| 亚洲综合中文字幕无线码| 99久久婷婷国产综合精品草原| 欧洲人妻丰满av无码久久不卡| 日本国产成人国产在线播放| 最新在线精品国自产拍福利| 五月婷婷丁香久久| 国产亚洲精品久久久久久小舞| 不卡一区二区在线视频观看| 又粗又猛又黄又爽视频| 手机+在线+精品| 人妻在线日韩免费视频| 新一级三级片国语版| 出差+协和+中文字幕| 人摸人从澡从超碰三级| 国产+传媒+麻豆| japanese熟女熟妇乱milf| 樱花在线视频免费观看电视剧网站| 九九99久久精品在免费线18| 国产香蕉在线视频| 免费在线观看亚洲| 97精品人妻一区二区视频| 琪琪在线影院电视剧免费观看| 欧洲精品欧美精品| 在线观看黄片免费入口不卡| 蜜桃精品免费久久久久影院| 国产白丝护士av在线网站| 久久天天躁狠狠躁夜夜av不卡| 乡下借宿的丰满人妻| 成人做爰A片免费看网站草莓| www.1314久色.com| 国产+高潮+护士| 国产美女高潮呻吟视频免费| 中文字幕视频在线欧美一区| 妺妺窝人体色WWW聚色窝孕妇| 亚洲av日韩av东京热| 国产极品美女高潮无套久久| 日韩在线看片免费人成视频播放| 久久综合久久自在自线精品自| 国产91精品欧美| 区二区三区玖玖玖| 国产精品午夜成人免费观看| 99久久人妻精品免费二区| 中文字幕+乱码+中文字幕av| 精品+国产+传媒| 天堂在线免费观看视频www| 青草久久人人97超碰| 欧美丰满肥婆videos| 99久久精品免费观看国产| 可以在线看的av网站| 午夜福利视频二区| 精品国产日韩欧美一级一区二区三区| 国产+欧美+亚洲视频| 国产欧美日韩精品一区二区图片| 久久久噜噜噜久久久精品| 亚洲人av在线影院| 国产女主播白浆在线观看| 午夜三级av在线播放| 河南熟女粗口叫床高潮| 亚洲欧洲一区二区福利片 | 欧美二区乱c黑人| 欧美人伦禁忌dvd放荡欲情| 欧洲av+成人+久久| 国产一区二区欧美在线观看 | 精品97国产免费人成视频| 人妻熟女一区二区aⅴ向井蓝| 国产92成人精品视频免费| 小黄鸭+av导航+在线| 亚洲欧美中文字幕在线观看| 久久伊人精品影院一本到综合| 熟妇人妻系列aⅴ无码专区友真希| 韩国国内大量揄拍精品视频| 亚洲精品av中文字幕在线| 天津熟女干部高潮尖叫| 日本欧美一级aaaaa毛片| 日韩在线观看只有精品视频| 无码av中文一二三区| 久久精品国产精品亚洲下载| 欧美一级午夜福利免费区| 国产精品porn| 波多野结衣绝顶高潮喷水| 人妻少妇精品中文字幕AV| 亚洲人妻内射一区二区三区| 尤物九九久久国产精品的特点| 亚洲天堂2017无码| 97这里有精品久久97| 东京热人妻丝袜无码av一二三区观| 亚洲精品一区二区精华 | 国产精品r级最新在线观看| 亚洲欧美日本在线| 国产+jk制服+在线| 亚洲精品国男人在线视频| 中文字幕在线视频一区二区三区| 日韩午夜熟女人妻视频| 欧美成人一区二区三区蜜臀| 亚洲国产日本韩国欧美mv| 好爽…又高潮了毛片| 国产一区精品va在线播放| 中文文字幕中文字幕在线中文乱码| 国产精品视频全国免费观看| 夫妻高潮淫语对白视频| 欧美不卡视频一区发布| 人妻在厨房被色诱| 精品福利视频一区二区三区| 91绿帽黑人系列一区| 正在播放懂色av| 99在线视频一区二区三区 | 亚洲精品一区二区三区香蕉| 香蕉久久久久久久AV网站| 大帝av在线一区二区三区| 亚洲精品国产一区二区在线观看| 亚洲色偷偷色噜噜狠狠99网| 国产精品欧美亚洲| 国产av精国产传媒| 色噜噜日韩精品欧美一区二区| 精品久久久久久久无码人妻热| 免费人成视频x8x8日本| 亚洲人成网站在线观看免费 | 亚洲女同精品一区二区| 国产日韩精品一区在线观看| 五十路丰满中年熟女中出| 亚洲黄色中文字幕免费在线观看| 国产在线高清精品一区免费| 国产区欧美区日韩区| 9l国产精品久久久尤物av| 欧美两根一起进3p做受视频| 欧美日韩激情在线观看免费| 狠狠色丁香婷婷亚洲综合| 《公交车欲淫》伦理| 丁香花小说手机在线观看免费 | 国产精品+制服诱惑| 99国产精品国产精品精品| 亚洲精品图片区小说区| 麻豆国产成人av高清在线观看 | 亚洲国产精品suv| 国产毛片乡下农村妇女bd| 大地资源高清在线观看| 亚洲国产精品一区二区美利坚 | 97超级碰碰人国产在线观看| 国产成人精品免费高潮视频| 亚洲午夜久久久影院| 大地资源二中文在线观看下载| 精品久久久久久无码中文字幕漫画 | 日韩成人av免费在线观看 | 亚洲成a人一区二区三区| 国产精品户露av在线户外直播 | yy6080久久亚洲精品| 国产精品v欧美精品v日韩精品v | 色拍自拍亚洲综合图区| 久久久久久久久久久久中文字幕| 很色很爽很黄裸乳视频| 成年人在线观看视频| 亚洲一区二区三区无码影院| 国产女人高潮毛片| 久久亚洲精品国产精品| 亚洲AV成人片无码| 久久99国产综合精品免费| 黑人巨鞭大战欧美熟妇| 国产av一区最新精品| 高清亚洲中文字幕在线观看| 久久中文字幕av一区二区不卡| 人妻少妇精品中文字幕AV| 国产精品卡1卡2卡三卡四| 亚洲免费在线观看视频一区| 日韩中文在线字幕| 人妻被按摩到潮喷中文| 国产成人精品免费视频大全最热| 国产美女直播亚洲一区久久| 国产熟睡乱子伦午夜视频麻豆| 久久精品国产亚洲av热一区| 毛片国产精品完整版| 免费视频www在线观看网站| 开心五月激情五月俺亚洲| 国产精品免费看久久久久久| 免费欧美视频一区二区三区| 日韩毛片+18+成人网| 樱桃国产成人精品视频| 国产精品人在线观看| 国产精品三级国产精品高| 国精产品99永久一区一区| 在线观看+国产+免费| 色婷婷av一区二区| 91精品视频一区二区三区| 麻豆绿帽人妻白洁AV| 麻豆精品久久久久久久99蜜桃 | 精品久久久噜噜噜久久| 久久久久青草大香综合精品| 欧美日韩亚洲一区二区蜜桃臀 | 人妻熟妇乱又伦精品视频无广告| 巨乳童颜+影音先锋| 一区二区不卡免费视频| 免费+无码+av网| 五月天婷婷缴情五月免费观看| 《公交车欲淫》伦理| 在线观看一区二区三区少妇| 少妇精品偷拍高潮少妇小说| 啊轻点灬太粗嗯太深了蜜桃av| 久久久99精品成人片中文字幕| 国产a∨国片精品白丝美女视频| 综合久久婷婷丁香国产一区二区| 久久精品青草社区| 国产99久久精品免费看| 国产精品一区二区含羞草| 国产精品成人**免费视频 | 午夜精品一区二区三区在线播放 | 日本最新免费二区三区| 亚洲色图欧美另类中文字幕| 无码中文字幕加勒比一本二本| 在线+欧美+国产| 亚洲精品久久久日韩美女极品| 一本色道HEZYO无码专区| 国产偷久久一级精品av小说| 丰满大爆乳波霸奶| 男女污在线亚洲午夜视频| 精品国产一区二区三区四| 日韩.国产.欧美在线字幕| 久久五十路丰满熟女中出| 欧美亚洲国产日韩一区二区| 日韩中文在线播放| 亚洲欧美日韩一区二区三区在线| 视频一区二区三区免费| 国产精成a品人v最新网站| 国产+免费+自拍| 欧美日韩黄色一级片| 777777国产7777777| 亚洲一卡二卡在线| av一区二区无人区在线观看| 太骚了全程对白Spa69| 日本欧美一级aaaaa毛片| 日韩黄a三级三级三级看三级少妇| 亚洲永久免费视频| 97SE亚洲精品一区| 国产精品激情在线观看| 亚洲阿v天堂无码z2018| 羞羞影院午夜男女爽爽在线观看 | 影视av久久久噜噜噜噜噜三级| 国产探花视频在线观看网址| 中国少妇裸体bbbbb| 中文字幕一区二区三区四区视频| 精品亚洲成熟女人www| 国产精品自产拍在线观看花钱看| 日韩精品视频在线观看三区| 免费一级特黄特色毛片久久看| 99国产精品久久久蜜芽| 一区二区三区国产网站麻豆| 青草av.久久免费一区| 亚洲欧美日本在线观看视频| 一本无码视频一区二区三区| 中文字幕在线影视| 国产一区二区三区在线观看网站| 欧美+香蕉网+五月| 国产+r级+磁力链接| 91在线视频观看| 国产天堂123在线观看| 精品人妻毛片久久久久久| 成人乱码一区二区三区av66| 区二区三区玖玖玖| 日本护士被弄高潮视频| 麻豆果冻传媒潘甜甜丶| 天堂网www在线资源最新版 | 久久婷婷五月综合色国产香蕉| 美女精品a网站又爽又色| 久久精品视频久久| 国产一区高清资源在线观看| 痴汉电车人妻被内谢下面很多水| 国产亚洲一卡2卡3卡4卡网站| 水牛影视一区二区三区久| 国产精品视频一区二区免费不卡| 日韩欧美国产一区二区福利| 人妻+97视频在线观看| 亚洲国产精品不卡av在线| 国产区日韩区欧美区| 青草伊人婷婷精品视频在线观看| 97人伦色伦成人免费视频| 国产精品亚洲а∨天堂2021| 在线日韩中文字幕av网站| 动漫精品啪啪一区二区三区| 橘梨纱连续高潮在线观看| 国产精品久久久久久妇女6080| 99久久极品少妇深夜福利| 国语少妇私密推油S卩A视频在线| 欧美一区二区视频国产精品| 欧美成人精品三级网站视频| 久久精品人人做人人爽老司机| 99在线视频一区二区三区| 丰满岳乱妇三级高清| 国产午夜夜伦鲁鲁片| 日本乱子伦一区二区三区| 天天爽夜夜爽视频精品| 国产69精品久久久久久久久久| 成人做爰A片免费看网站百丽| 柳州莫菁菁av一区| 在线亚洲97se亚洲综合在线| 久久婷婷丁香七月色综合| 2021国产精品午夜久久| 国产一级视频在线| 西西人体窝窝仙踪林| 小黄鸭+av导航+在线| 亚洲欧洲中文日韩久久av乱码| 91中文字幕在线视频| 日韩人妻无码一区二区三区综合| 在线+中文字幕在线观看| 天堂а√在线地址8中文种子| 少妇9999九九九九在线观看| 北条麻妃大战黑人无码| 日韩黄a三级三级三级看三级少妇| 国产精品96久久久| 182国产精品视频| 亚洲午夜精品一区二区国产| 亚洲永久网址在线观看 | 国产免费午夜福利757| 一卡二卡三卡在线视频| 卡一卡二卡三专区免费| 亚洲国产人成一区二区精品区| 夜夜躁狠狠躁日日躁2022| 欧美日韩在线亚洲二区综二| 国产色婷婷亚洲99精品小说| 亚洲国产日韩欧美综合另类bd| 欧美日韩在线播放三区四区| 99久久免费只有精品国产| AV天堂无码资源网| 国产免费不卡午夜福利在线| 国产精品白丝美女免费在线观看 | 主播大秀一区二区三区| 国产成在线观看免费视频密| 国产一区二区三区在线乱码 | 国产精品久久久久AV台湾| 真人做爰a片免费观看茄子视频| 国产精品免费观看调教网| 亚洲成色A片77777在线小说| 麻花星空天美mv免费观看电视剧 | 琪琪女色窝窝777777| 97青草超碰久久国内精品91| 日韩欧美一区二区三| 精品成在人线av无码免费| 免费无码又爽又刺激高潮视频看看老A | 国产成人精品亚洲午夜| 国产精成a品人v最新网站| 午夜福利啪啪体验区| 国产在线看片免费观看| 三级欧美韩日大片在线看| 欧美二区乱c黑人| 久久精品道一区二区三区| 又大又粗又硬又爽黄毛少妇| 精品区一区二区三区| 无码一区二区三区视频| 久久久久久亚洲精品专区| 欧美专区+日韩视频+人妻| 一级做a爰片久久毛片潮喷一 | 特大巨黑吊xxxx高潮| 免费观看成年人网站| 精品久久久久久无码中文字幕漫画| 亚洲欧美一区二区精品久久久| 国产精品夫妻视频| 国产高清午夜人成在线观看| 国内精品久久久久久久小说| 日韩一区欧美激情校园春色 | 午夜影院亚洲大码免费| 免费一区二区视频在线观看不卡| 精品久久久久久久久久熟女| 午夜福利影院私人爽| 国产精品久久久一区| 中文字字幕乱码视频高清| 中文字幕av一区中文字幕天堂| 全程露脸X88AV| 日韩一区二区视频| 欧美v国产在线一区二区三区 | 久本草在线中文字幕亚洲欧美 | 无码综合天天久久综合网| 久久久久久一区国产精品| 国产一线二线在线观看| 日韩成人无码v清免费| 欧美精品久久久久久久久久白贞| 国产精品视频全国免费观看| 《交换3》金智媛演技评价| 亚洲中文字幕一区二区麻豆| 亚洲精品无码久久久久久久| 欧美另类一区二区| 国产一二中文字幕91影院日韩欧美| 国产少女免费观看电视剧字幕大全| 又粗又猛又爽又黄的视频| 久久精品国产亚洲av热一区| 最新黄色网址在线观看| 八戒青柠影院观看免费高清电视剧| 国产xxxx视频在线观看| www.日韩精品在线观看| 国产资源在线观看| 国产妇女馒头高清泬20p多毛 | 国产午夜理伦三级好看| 18+韩国女主播青草| 国产一级精品理论片在线| 国产一级片免费在线观看| 人妻无码少妇一区二区| 蜜桃人妻无码AV天堂二区| 日本人妻人人人澡人人爽| 亚洲狠狠色成人综合网| 三年片在线观看高清完整版 | 日本豐滿熟婦BBXBBXHD| a级老太婆毛片老太婆毛片| 久久精品视频久久| 噜噜噜亚洲精品在线观看| 国产又色又爽又黄又免费文章| 精品熟人一区二区三区四区| 日韩欧美+亚洲+国产| 麻豆ā片免费观看在线看| 欧美精品一区二区视频| 日韩高清中文字幕| 97久久久精品综合88久久| 久久99er精品国产首页| 久热这里只有精品99国产6| 亚洲桃色在线播放国产精品 | 久久精品免费网站| 天堂+地址+在线| 99r在线精品视频在线播放| 日韩人妻无码精品一专区二区三区| 欧美激情国产一区二区13| 久久亚洲国产男女日穴精选| www夜夜操com| 熟女服务区免费一区二区三区 | 欧美日韩在线视频免费播放| 国产a国产片国产| 精品中文字幕免费在线观看| 影音先锋大型av资源| 杨思敏高圆圆三级做爰| 国产精品久久久一区| 日韩69永久免费视频| 300部大龄熟乱视频| 色婷婷亚洲婷婷7月| 一级婬片A片AAAA片老牛| 久久人妻无码中文字幕第一| 大陆搡BBBBB搡BBBBBB| 日韩精品人妻2022无码中文字幕| 国产精品久久国产| 深夜福利1区2区3区欧美| 香蕉大人久久国产成人av| 93国产精品久久久久久| 超碰伊人久久大香线蕉综合| 国产69精品久久久久熟女| 国产对白叫床清晰在线播放图片 | 在线亚洲精品国产成人av剧情| 成年人午夜免费视频| 好色妻降临av一区二区| 国产精品一区二av18款| 两根茎一起弄进去好爽视频| 久久97精品久久久久久久不卡| 中文在线字幕免费观看电视剧日剧| 国产精品久久久久久久久潘金莲| A片女女女女女女BBBB| 中文字幕av久久激情亚洲精品| 真实国产乱子伦一区二区三区| 国产精成a品人v在线播放| 国产精品一级AA毛片不收费| 手机在线一区二区三区| 巨爆乳无码视频二区涩漫| 国产精品激情在线观看| 亚洲欧美日韩中文加勒比| 亚洲s码欧洲m吗国产精品| 午夜国产福利小视频在线| 国产免费无遮挡吃奶视频| 久久精品苍井空精品久久| 一本大道道久久综合av| 欧美日韩免费高清一区色橹橹 | 精品一区二区福利视频| 亚洲色婷婷婷婷五月基地| 国产麻豆成人传媒免费观看| 国产成人精品一区二区在线| 中文字幕欧美一区在线视频观看 | 国产精品久久久久久久久久免| 96亚洲精品久久久蜜桃| 亚洲中国精品黄色av一区| 国产乱xxxxx97国语对白| av动漫在线观看一区二区| 殴美亚洲精品182| 亚洲中文无码av永久| 国产免费激情视频在线观看| 电击+调教+折磨| 久久精品道一区二区三区| 国产精品精品久久久久久甜蜜软件 | 国产成人午夜福利在线观看| 91亚洲高清视频在线观看| 久久五十路丰满熟女中出| 最新国产精品精品视频| 中文亚洲精品字幕在线观看 | 一区二区激情av| 全部免费播放在线毛片| 97精品无人区乱码在线观看 | 久久免费观看视频| 国产一二三四在线视频| 亚洲制服丝袜中文字幕国产| 日韩乱码在线观看免费视频网站| 色五月丁香五月综合五月4438| 欧美日韩综合精品无人区| 欧美日韩成人制服丝袜三级片 | 五月天婷婷缴情五月免费观看 | 精品亚洲中文字幕东京热网站| 在线天堂中文最新版www| 天天综合色天天综合色h | 亚洲第一美女精品久久久久| 一本岛高清乱码2020叶美| 欧美数码高清视频| av动漫在线观看一区二区| 精品视频一起草在线播放| 18+av在线观看| 日本欧美一级aaaaa毛片| 亚洲欧美激情另类图片小说| 亚洲精品久久久久中文字幕一福利| 亚洲免费成人av| 年轻内射无码视频| 色欲综合久久躁天天躁| 国产一区二区av在线免费观看| 狠狠久久永久免费观看| 国内自拍一二三四2021| 交专区videossex| 国产一区二区蜜臀av在线| 69精品国产福久久久久久| 少妇荡乳情欲办公室毛片一区二区 | 亚洲欧美制服另类国产二区| 重囗味sM群虐老女人| 18+av在线观看| 狠狠色综合欧美激情| 国产精品国产三级国产av剧情| 99re6热在线精品视频播放| 农村欧美丰满熟妇xxxx| 大桥未久+无码+bt| 熟妇乱子伦海角社区| 国产+高潮+免费视频| 日韩免费一区二区三区| 伊人狼人大焦香久久网| 精品国产鲁一鲁一区二区三区| 久久久久久久麻豆| 天堂资源中文最新版在线一区| 亚洲欧美在线中文字幕不卡| 日韩精品爆乳高清在线视频观看| 久久国语精品三级亚洲一二| 可以在线看的av网站| 天天av天天爽无码中文| 国产极品美女到高潮| 日本一卡二卡不卡视频查询| 日本理论片免费观看在线视频| 在线免费观看尤物色视频网站| 特级西西WWW444人体聚色| 苏雨瑶的初苞被强开了第二部| 国产在线观看免费高清电视剧大全 | 午夜视频在线观看一区| 国产欧美国产精品第一区| 嘟噜噜嘟噜噜跟大妈一样| 北条麻妃大战黑人无码| 亚洲国产手机免费在线观看| 亚洲综合Av一区二区三区| 日本+欧美+国产| 美足+丝袜+影音先锋| 茄子av在线观看| 亚洲∧V久久久无码精品| 四川女人毛多水多A片| 天堂va蜜桃一区二区三区| 男人的天堂色偷偷| 亚洲老熟女乱综合一区二区| 18+动漫视频网站| 拍拍拍产国影院在线观看| 成人免费无码大片a毛片小说| 无码中文字幕ⅤA精品影院| 九九影院理论片在线| 欧美+香蕉网+久久| 国产+日产+欧美| 国产欧美成人xxx视频| 欧美日韩大片中文字幕在线观看 | 国产+欧美+激情| 国产+高潮+免费| 嗯啊嗯啊在线观看| 日本无码一区二区三区| 国产在线精品一区二区夜色| 一道本高清一区二区av| 欧美激情精品久久久久久多人| 在线观看国产免费高清不卡| 欧美中文字幕一区二区三区乱码| 蜜臀av国内精品久久久| 成人无码一区二区三区网站| 欧美人成在线视频| jizz国产免费| 91偷拍精品一区二区三区| aaa一级黄色片| 99久久精品国产综合| 亚洲日韩久久综合中文字幕| 国产在线拍揄自揄视精品按摩| 在线天堂新版资源www| 波多野无码肉欲HD| 日韩欧美中文字幕在线观看免费| 一区二区久久精品66国产精品| 大香蕉精品手机在线观看| 香蕉视频在线免费看| 玩弄美艳馊子高潮无码| 91这里只有精品| 国产在线拍揄自揄视精品按摩| 亚洲+日韩一区二区| 18+在线看视频| 成人无码一区二区三区网站| 2020狠狠狠狠久久免费观看| 国产成人久久久77777| 两个人日本www免费版| 91久久精品一区二区婷婷| av在线播放日韩亚洲欧| 伊人精品成人久久综合| 欧美精品v欧洲高清视频在线观看| 久章草这里只有精品| 近親伦一区二区三区| 亚洲一区二区视频在线观看网站| 一区一区三区四区产品动漫| 中文字幕一区二区三区久久网站| 18+av在线免费|