精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

97人妻成年人视频公开| 国产精品久久久久久av福利| 国产成人A∨在线观看不卡| 免费观看av网址| 日韩av资源在线| 日韩精品+巨乳人妻+一区二区| 中文亚洲精品字幕在线观看| 综合久久婷婷综合久久| 国产山东熟女48嗷嗷叫| 久久成人人人人精品欧| 六夫共妻高H喷汁呻吟NP| 淫色一非一区二区朝鲜| 免费在线观看AV| 葵司+下载+影音先锋| 欧洲熟妇色xxxx欧美老妇| 18+免费视频网站| 中文字幕乱码熟女人妻水蜜桃| 台湾妹子中文娱乐网| 久久91精品国产91久久小草| 日韩av免费在线看| 一个色综合国产色综合| 欧美成人看片一区二区尤物| 亚洲精品国产专区91在线| 国产精品久久久久久久福利| 人妻丨绿帽丨91Porn| 日本乱子伦一区二区三区| 欧美+在线+亚洲| 多P无码视频网页| 亚洲Av永久无码天堂影院黑人| 亚洲精品9999久久久久| 最新国产成人av网站| 久久久久国产视频| 亚洲精品国产专区91在线| 男女污在线亚洲午夜视频| 69xxxxx中国女人| av天堂中av世界中文在线播放 | 强开小嫩苞一区二区三区网站| 熟妇全身大保健(对白)| 国产后入清纯学生妹| 亚洲av无码专区首页第一页| 日本黄色免费视频| 韩国美女一区二区在线观看视频| 91在线视频免费看| 亚洲一卡二卡三卡四卡无卡姐弟| 在线人人车操人人看视频| 成人视频在线18| 91久久香蕉国产日韩欧美9色| 丰满妇女免费看69dVA片 | 日韩人妻偷拍一区二区三区| 辽宁熟女高潮狂叫视频| 天堂视频入口免费在线观看 | 亚洲AV成人噜噜无码网站 | www夜夜操com| 色天天综合久久久久综合片 | 美脚恋足癖一区二区三区| 欧美成人+www+一区二区| 亚洲日韩一区二区一无码| 日日AV色欲香天天综合网| 一区二区三区四区在线播放| 国产精品女同一区二区久久夜| 日韩在线视频观看免费网站| 无码专区视频精品老司机| 亚洲色精品三区二区一区| 国产欧美日韩视频怡春院| 西西人体44WWW高清大胆| 亚洲成人在线视频观看| 国产精品成人**免费视频| 免费大片一级a一级久久三| 亚洲欧美洲成人一区二区三区| 少妇高潮7777777丫乄| 99久久精品国产综合一区| 免费无码又爽又刺激动态图| 精品久久久久久无码专区不卡| 大粗鳮巴征服尤物老师| 九九九久久久精品| 亚洲av乱码国产精品麻豆| 福利在线视频导航| 免费污污污完整版网站| 国产99视频精品免视看芒果| 欧美精品亚洲精品日韩在线观看| 一个人看的免费高清视频www| 国产乱淫av蜜臂片免费| 国产精品美女久久久久av超清| 色愁久久久人愁久人生无悔意思相近| 国产亲伦免费视频播放| 国产精品揄拍一区二区久久国内亚洲精| 一级做a爰片久久毛片潮喷一| 亚洲AV无码久久久久网站蜜桃| 川上优av一区二区线观看| 最近在线更新8中文字幕免费| 凹凸69堂国产成人精品视频| 亚洲国产成人精品女人久久| 久热中文字幕第一区二久| 欧美日韩在线观看视频| 99国产精品18久久久久久| 亚洲精品欧美日韩| 91淫语熟女骚话连篇| 欧美视频在线观看| 国内精品伊人久久久久av一坑| 亚洲欧美日产综合在线网| 伊人久久综在合线亚洲2019| 国产精品8888| 高清亚洲中文字幕在线观看| 亚洲成在人网站av天堂| 中文字幕+乱码+www| 国产精品入口网站7777| 深夜激情18禁亚洲蜜臀av| 免费成人进口网站| 亚洲国产99精品国自产拍 | 日本欧美成人片AAAA| 妈妈你真棒插曲mv在线观看免费| 亚洲va欧洲va国产va不卡| 欧美超猛烈一区二区三区| 人妻中文在线一区二区三区 | 6969成人亚洲婷婷| 全黄一级裸片视频| av中文字幕网免费观看| 欧美综合在线观看视频| 18+成人免费视频| 初撮八十路高龄老熟女| 一区二区三区国产在在线播放 | 日韩国产在线观看不卡免费| 无码国产精品一区二区免费模式 | 欧美成妇人吹潮在线播放+下载| AV剧情麻豆映画国产在线观看 | 国产精品久久久久久久久久免| 日韩欧美一区二区三区四区| 中文天堂在线www| 91精品国产综合久久婷婷香| 亚洲精品成人av| 国产真实自在自线免费精品| 国产+欧美+欧洲| 高清无码视频18| 国产精品美女WWW爽爽爽视频| 亚洲精品无码AⅤ中文字幕蜜桃 | 亚洲精品国产精品色诱一区| 精品国产一区二区三区色欲| 欧美一区二区精品在线观看视频| 国产精品久久久久久久久免费丝袜 | 国产综合亚洲区在线观看| 99福利资源久久福利资源| 黄色一区二区三区在线观看 | 国产伦理一区二区三区| 亚洲国产精品久久久久久| 99久久一区二区| 国产真实乱偷精品视频| 欧美日韩成人在线免费观看| 久热re这里精品视频在线6| 明星被黑人无套内谢| 日本精品不卡免费在线播放| 欧美三级在线高清不卡| 国产精品卡1卡2卡三卡四| 波多野结衣一二三区| 国产av高清怡春院| 国产三级精品在线| 国产精品三级一区二区| 成人做爰A片免费看网站草莓| 岛国精品一区二区| 国产欧美精品日韩区二区麻豆天美| 深圳妇女搡BBBB搡BBBB| 五月天婷婷激情网| 五十路丰满中年熟女中出| 最新av网站免费在线观看| 麻豆妓女爽爽一区二区三| 免费乱理伦片奇优影院| 亚洲一区二区三区四| 91啦丨九色丨刺激中文| 国产精品jk白丝蜜臀av小说| 亚洲av乱码国产精品色午麻豆| 午夜精品久久久久久| 亚洲一级视频在线观看视频| 国产在线观看99| 九九热线视频精品99| 在线欧美日韩制服国产| 国产av一区二区三区高潮蜜| 久久久激情一区二区三区| 国产在线无遮挡免费观看| 免费黄色av网站| 国产97人人超碰cao蜜臀| 欧美成人+精品一区+在线观看| 亚洲欧美日本在线观看视频| 苍井空一级婬片A片AAA片动漫| 国产妇女馒头高清泬20p多毛| 亚洲精品1卡2卡3卡| 6090新视觉理论电视剧4410yy| 日韩欧美精品一区| 国产一区二区三区在线免费| 欧美综合一区二区三区在线播放| 99久久精品久久久久久动态片| 视频毛片下载蜜桃| www.精品综合久久久久| 国产成人精品18禁三区| 中文字幕+乱码+中文字幕在线观看 | 中日韩无砖码一线二线| 亚洲欧美国产国产综合一区 | 中文字幕日韩一区二区不卡| 亚洲人成在线播放网站| 538prom精品视频线放| 偷拍亚洲综合20p| 视频久re精品在线观看| 天天狠天天添日日拍捆绑调教 | 人妻少妇邻居少妇好多水在线| 亚洲+综合+欧美| 欧美精品国产制服第一页| 免费午夜福利不卡片在线播放| 国产精品一av一免费爽爽| 国产成人亚洲精品青草| 久久中文字幕无码一区二区| 出差+协和+中文字幕| 18禁国产精品久久久久久网站 | 99久久国产综合久久精品| 国产精品熟女亚洲av麻豆| 欧美日韩中文字幕在线xxx| 亚洲国产福利一区二区三区| 国产免费网站看v片在线无遮挡| 无码专区人妻系列日韩精品少妇| 欧美日韩国产一区二区三区| 国产精品久久久久久免费免熟| 国产高清一区二区三区视频| 漂亮人妻中文字幕丝袜| 极品气质女神呻吟娇喘91| 成人+免费+在线观看| 亚洲国产精品第一区二区| 亚洲色成人网站www永久尤物| www色播com| 日韩精品一区二区三区中文| 亚洲色图欧美视频另类视频| 久久精品国产68国产精品亚洲 | 久久精品亚洲毛片美女极品视频| 天天狠天天添日日拍捆绑调教| 伊人精品久久久大香线蕉| 国产精品高清一区二区不卡片 | 九九热久久久99国产盗摄蜜臀| 日韩中文字幕v亚洲中文字幕| 久久综合亚洲色1080p| 成人做爰黄AA片免费播放贝微微| 超级碰碰人妻中文字幕| 日韩成人av免费在线观看| 欧美日本久久综合网站点击| 丰满的女人一区二区三区| 国产剧情一区在线| 日日噜噜夜夜狠狠视频免费bd | 欧美三级在线观看视频| 2022av视频| 在教室被同桌cao到爽漫画| 国产青草视频在线观看免费影院| 激情综合亚洲色婷婷五月app| 国产无遮挡又爽又黄不要vip| 曰本a∨久久综合久久| 羞羞影院午夜男女爽爽免费| 日韩欧美一区二区在线视频| 国内精品人妻无码久久久影院| 亚洲中文字幕人成乱码| 国产精品免费观看调教| 亚洲阿v天堂无码z2018| 蜜桃视频成人A片免费观看少妃| 人妻熟女一区二区aⅴ向井蓝| 国产毛a片啊久久久久久保和丸| 精品女二区三区激情免费视频| 在线播放av网站| 车上拨开岳裙子猛进入| 波多野结衣潮喷视频无码42| 手机在线免费观看毛片av| 香蕉视频+在线观看+色吧| 东京热一本大交乱HD| 69国产成人精品二区| 人妻中文字幕一区二区三区视频| 成年免费视频黄网站在线观看| 日本+熟女+磁力链接| jizz国产免费| 99视频+国产日韩欧美| 国产+在线+超碰| 尤物亚洲国产亚综合在线区| 人妻精品国产一区二区| 国产av一区二区二区三区| 蜜臀午夜精品视频在线观看| 91视频免费网站| 日本在线视频网站+www+色| 日本熟妇色XXXXX日本免费看| 中文字幕国产专区欧美激情| 精品无人乱码一区二区三区的特点| 国产女人18毛片水真多成人如厕| 精品久久久久久国产免费| 亚洲欧美另类麻豆综合网| 欧美成人看片一区二三区图文| 丰满双乳峰白嫩少妇成人网站| 制服丝袜在线视频| 风流少妇野外精品视频| 久久精品国产亚洲av成人婷婷 | 极品少妇被啪到呻吟喷水| 亚洲欧美一级久久精品国产特黄| 国产精品偷伦视频观看免费| 久久97久久97精品免视看秋霞| 欧美日韩国产专区一区二区| 国产成人精品久久一区二区| 成人视频在线18| 国产高清免费在线观看精品| 草莓APP黄污下载| 日本在线一区二区三区欧美| 96亚洲精品久久久蜜桃| 天堂视频入口免费在线观看| 国产精品综合在线| 四虎成人精品永久网站| 日韩精品av在线免费观看| 午夜精品一区二区三区免费| 天天狠天天添日日拍捆绑调教| 天堂网www中文在线| 国产精品色婷婷久久99精品| 成年日韩片av在线网站| 在线观看黄片免费入口不卡| 欧美三级+不卡+在线观看| 肉大榛一进一出免费视频| 无码+护士+磁力链接| 久久人人97超碰国产亚洲人| 国产亚洲制服丝袜一区二区| 91人人妻人人爽在线视频| 嫩草一区二区极品在线观看| 成人免费淫片aa视频免费| 国产黄视频在线观看91| 91精品众筹嫩模在线私拍| 久久久久xxxx| 免费+精品+在线观看| 欧美久久久久久久久久久久久久| 无码夜色一区二区三区| 男女乱淫免费视频一区二区三区 | 久久综合狠狠色综合伊人| 日韩+欧美+导航| 国产成人精品综合| 亚洲色老汉av无码专区最| 日韩美女免费线视频| 老色鬼久久亚洲av综合1| 中文字幕一区二区三区夫目前犯| 自拍视频国产三级| 国产视频xxxx| 成人精品一区二区三区A片用毒蛇| 亚洲无线观看国产精品| 日韩精品视频免费在线观看| 亚洲天堂2017无码| 精品123区免费视频国产成人| 天堂一区二区mv在线观看| 亚洲精品久久久久久婷婷| 亚洲一区久久精品东京热| 国产亚洲欧美日韩在线一区| 欧美日韩国产精品| 精品人妻伦一二三区久久竹夫人| 波多野结衣视频一区| 免费专区丝袜调教视频| 欧美+国产+在线观看| 茄子香蕉榴莲草莓丝瓜绿巨人污| 床震高潮在线观看无遮挡 | 在线精品视频一区二区三四| 黑人与人妻无码中字视频| 国产精品欧美精品日韩专区一乛方 | 亚洲国产日韩视频观看| 国产精品久久久久久久久久不蜜月| 国产一级免费视频在线| 欧美一级免费在线观看视频最新| 91啦丨露脸丨熟女| 99久久婷婷国产综合精品| 91n免费处女在线| 日本内射精品一区二区视频| 久久久久久久久久久91| 久久青青草原精品国产app| AV天堂无码资源网| h狠狠躁死你h八十年代| 国语对白做受xxxxx在线| 国产三级日本三级欧美三级| 精品1区2区3区4区产品 | 一区一区三区产品乱码亚洲| 国产丨熟女丨国产熟女视频 | 午夜yy一区二区三区视频| 午夜亚洲国产理论片二级港台二级 | 国产欧美久久一区二区| 日本人妻免费一区二区三区| 久久精品国产久精最新章节| 国产精品人成视频免费软件| www.1314久色.com| 北岛玲一区二区三区四区| 亚洲黄色免费网站| jiZZjiZZjiZZ亚洲熟女| 深夜男女福利18免费软件| 日本免费无遮挡毛片的意义| 五月天久久久久久九一站片| 久久久久国色av∨免费看| 久久男人av资源网站无码软件 | 天堂躁躁人人躁婷婷视频ⅴ| 国产人妖在线视频| 久久99精品久久久久久hb| 肥臀浪妇太爽了快点再快点| 一本大道久久香蕉成人网| 伊人久久成综合久久影院| 国产区又黄又硬高潮的视频 | 亚洲高清国产av一二三区| 美女黄色视频网站在线观看| 欧美日韩国产免费观看一区二区| 国产清纯美女高潮出白浆+色| 妺妺窝人体色77777777| 亚洲国产日韩欧美在线播放| 18+成人免费视频| av中文字幕+潮喷+在线观看| 香蕉视频在线网址| 男女又色又爽又爽视频| 97国产爽爽爽久久久| 色欲色欲久久综合网| 一区二区三区四区亚洲 | 伦利理午夜理论片| 级r片内射在线视频播放| 人妻无码一区二区三区免费| 国产精品疯狂输出jk草莓视频| 伊人成人开心婷婷久久网| 少妇爆乳无码专区| 妺妺窝WWW仙踪林粗大野| 国产午夜福利久久精品| 五月婷婷丁香在线| 狠狠综合久久av一区二区蜜桃| 野花影院在线观看视频| 无码人妻一区二区三区免费n鬼逝 av岬奈奈美一区二区三区 | 欧洲无线码免费一区| 亚洲色精品三区二区一区| 久久久精品视频网站| 中文字幕+日韩在线视频 | 欧美乱妇日本无乱码特黄大片| 久久品道一品道久久精品| 日本高清在线www3344| 成人看黄色s一级大片| 日韩黄色一级网站| 蜜臀午夜精品视频在线观看 | 国产精品jk白丝蜜臀av小说| 国产乱色国产精品免费视频| 妺妺窝人体色88888美女吗| 久久久久久久久女人体| 在线观看com国产视频| 99久久精品国产亚洲| 台湾妹子中文娱乐网| 亚洲欧美日韩国产成人精品| 亚洲国产精品热久久| 亚洲国产欧美在线人成人| 激情综合色五月六月婷婷| 亚洲国产一区二区在线| 少妇高潮喷水久久久影院| 蜜桃丰满熟妇av无码区不卡| 久久精品国产第一区| 欧美成人精品三级在线观看播放 | 欧美一片毛国产在线视频| 国产高清吃奶成免费视频网站| 一区二区三区四区黄色片| 精品福利一区二区| 国产精品毛片久久久久久明星| 日韩成人免费在线观看| 中文字幕99免费精品视频网 | 亚洲精品国产A久久久久久| 日韩国产精品视频| 五月丁香久久丫婷婷一区不卡| 免费+高清+国产| 久久久精品视频网站| 一区二区三区四区亚洲| 国产成人久久av免费高清密臂| 日本大香蕉中文在线视频| 欧美亚洲日韩在线在线影院| gogogo高清国语完整| 福利视频中文字幕一区二区| 中文久久乱码一区二区| 色狠狠一区二区三区熟女p| 婷婷嫩草国产精品一区二区三区 | 久久国产精品—国产精品| 国产极品美女到高潮| 日韩无码中文字幕| 美国午夜福利视频一二区| gav成人网免费免播放器播放| 久久半精品国产99精品国产| 草草影院ccyy国产日本欧美| jjzzjjzz在线观看| 91啦丨露脸丨熟女| aaa少妇高潮大片免费看| 免费无码又黄又爽又刺激| 精品中文字幕在线观看| 久久婷婷人人澡人人喊人人爽| 大象一区一品精区搬运机器| 在线免费观看美女被靠到高潮| 亚洲视频在线播放一区二区三区| 91超碰在线播放| 色偷偷噜噜噜亚洲男人| 国产精品三级三级三级| 亚洲精品久久久久久中文| 欧美日韩激情在线观看免费| 久久久综合九色综合88| 87福利午夜福利视频少妇| 国产在线麻豆在拍91精品| 456视频在线观看| 在线观看高清国产色视频| 久久久久人妻精品一区蜜桃| 国产欧美精品一区二区三区三| 精品一区二区三区无码免费直播| www.黄片.com| 日本不卡在线观看免费v| 人妻秘书香汗av一区二区| 香蕉视频1024| 精品亚洲欧美日本在线观看| 久章草这里只有精品| 美女制服丝袜国产精品网站| 五月天激情久久久| 爽交换快高h中文字幕| 国产在线拍揄自揄视精品按摩| 美女视频图片久久黄网站| 日本任你躁免费精品视频2| 成人资源在线观看| 国产女人18毛片水18精品软件| 2018国产天天谢在线观看| 麻豆精品人妻一区二区三区蜜桃| 麻豆一区二区99久久久久| 篠田优人妻与黑人BD在线| 深夜福利小视频在线观看| 国产精品三级av三级av三级| 亚洲精品久久久久久中文传媒| 成人免费在线观看h视频| аⅴ天堂中文在线| 国产+免费+高清| 欧美日韩人成视频在线播放| 美女视频黄频a免费高清不卡| 精品一区二区三区四区视频观看| 亚洲www久久久| 国产成人高清在线观看视频| 成人午夜高潮毛片| 亚洲国产日韩精品在线观看| 粉嫩av一区二区三区四区免费| 探花视频免费观看高清视频| 7777影视大全免费追剧小别离| aaa女人18毛片水真多| 少妇一级娃片淫片象免费放 | 91亚洲乱码卡一卡二卡新区豆| gogo人体做爰大胆视频| 天天躁日日躁狠狠躁免费麻豆 | 女女女女女裸体处开bbb| av久一区二区国产在线观看| 免费+精品+在线看| 欧美一区二区最爽乱淫视频免费看| 乖女早晨含精吞精h正常吗视频| 午夜小视频免费观看| 熟妇激情内射com| 天天澡天天狠天天天做| 2020久久香蕉国产线看观看| 欧美在线99香蕉在线视频 | 亚洲一久久久久久久久| 久久www人成免费看片中文| 国产又粗又猛又爽又视频| 亚洲人成在线播放网站| 清纯粉嫩极品夜夜嗨av| 久草在线免费福利| 巨大荫蒂视频欧美另类大| 爆乳亚洲一区二区'| 国产偷人妻精品一区| 狂躁少妇XXXX高潮无码| 中文字幕一区二区三区乱码图片| 国产亚洲精品久久久久久无| 免费激情视频网站| 国产日韩精品欧美一区喷水| 久久免费一区二区三区国产| 国产精品久久..4399| 人人超人人超碰超国产97超碰| 欧美日韩在线视频播放| 亚洲精品一区二区精华 | 欧美精品videossex少妇| 中文字幕+丝袜+女上司| 高潮+喷水+免费| 欧美韩国一区二区| 久久99精品久久久久久熟女影| 中文字幕+乱码+中| 亚洲一区二区三区日韩在线视频| 在线观看日本午夜高清美女 | 新婚少妇无套内谢国语播放| 《漂亮的女邻居5》hd| 亚洲七七久久精品中文国产| 2014av天堂无码一区| 成人+免费+在线观看| 少妇精品无码一区二区免费视频| 亚洲乱码中文字幕| 在线观看AV黄网站永久| 伊人久久成综合久久影院| …伊人久久婷婷国产综合| 欧美高清美女视频一区二区三区 | 亚洲精品久久久久久无码色欲四季| 一个人看的视频+www+动漫| 337p日本欧洲亚洲大胆在线| 亚洲精品成人av| 日本欧美国产一区二区三区 | 久久久噜噜噜久久熟女色| 裸体+光屁屁+露胸| 国产成人亚洲精品另类动态图| 2021久久超碰国产精品最新| 国产VA免费精品高清在线| 亚洲国产精品va在线观看香蕉| 另类+女同+影音先锋 | 日韩欧美中文字幕一区二区 | 91精品人妻麻豆一区二区| 免费看的av网站| 亚洲精品偷拍无码不卡av| 亚洲+日韩+专区| 精品视频无码一区二区三区| 中文在线观看免费高清电视剧| 日本社区在线观看| 欧美丰满肥婆videos| 国产亚洲又爽ⅴa在线天堂| 久草香蕉在线视频国产乱码精品一区二区三上 | 亚洲综合色区另类小说| 自拍偷拍亚洲色图日韩欧美| 中文国产日韩精品av片| 日韩av免费观看一区二区三区| 国产欧美久久一区二区| 午夜免费av啪啪噜噜| 成人一区在线观看| 人妻无码系列一区二区三区| 欧美日本二区三区四区人气| 黄色片在线观看免费| 蜜臀国产精品久久久久久| 国产精品亚洲欧美一区二区| 91麻豆精产国品一二三产品测评| 在线观看+免费+国产| 好色妻降临av一区二区| 欧美日韩国产精品久久乐播| 欧美最猛黑人xxxxx猛交| 亚洲国产精品久久久久秋霞小| 久久精品国产99国产| 亚洲色18禁成人网站www| 人人躁日日躁狠狠躁av麻豆男| 美足+丝袜+影音先锋| 欧美日韩免费高清一区色橹橹| 久久亚洲精品无码gv| 久久ee热这里只有精品| 黄色毛片一级黄色| 中国猛少妇色xxxxx| 中文字幕亚洲一区视频在线观看| 神马影院手机在线观看| 97人妻成年人视频公开| 经典三级+少女潘金莲| 国产三级国产精品专区50| 欧美亚洲日本一区| 91在线中文字幕| 色欧美福利视频看看午夜| 精品视频在线免费播放| 久久亚洲美女精品国产精品| 在线看片免费人成视久网不卡| 黄网站在线免费永久观看| 亚洲区在线观看视频在线| 免费国产污网站在线观看不要卡| 亚洲精品偷拍无码不卡av| 国产福利视频一区二区三区| 国产91av视频在线观看| 国产精品日本一区二区不卡视频| 久久婷婷香蕉热狠狠综合| 国产精品+制服诱惑| 国产精品成人免费视频网站 | 一区二区三区成人免费频| 四虎成人永久在线精品免费| 久久99精品视频免费观看 | 久久激情久久久久久久熟女| 亚洲麻豆91传媒| 国产精品入口网站7777| 日本极品少妇一区二区在线观看 | 尤物亚洲国产亚综合在线区 | 在线欧美精品一区二区三区| 国产成人AⅤ片在线观看免费 | 亚洲+日本+高清| 成人看片黄a免费看视频| 亚洲第一视频在线| 欧美+国产在线观看| 日韩欧美亚洲国产精品幕久久久| √资源天堂中文在线| 中文+字幕+国产| 中文字幕在线日韩| 真实粗暴交videos尖叫| 欧美不卡视频一区发布| 亚洲h精品动漫在线观看| 四川少妇高潮无套毛片| 97视频人人澡人人爽| 天天在线精品视频一区二区| 亚洲精品国产av成拍色拍婷婷| 欧美+在线+亚洲| 热久久久久久久久| 亚洲卡一卡2卡3卡4精品| 精品人妻码一区二区三区| 亚洲а∨天堂久久精品9966| 国产麻豆亚洲欧美高清一区二区| 亚洲免费在线观看| 精品久久亚洲中文不卡| 国产一级免费视频在线| 亚洲高清在线视频| 午夜乱蜜桃久久久乱| 好吊色国产欧美日韩免费观看 | 国产高清a视频在线观看| 一级肉体全黄裸片| 99久久夜色精品国产网站| 日本片黄在线观看免费| 亚洲天堂一二区免费播放| 青青色国产手机在线观看| 92福利影院一区二区三区| 午夜激情一区二区| 亚洲图片欧美在线看| www国产+欧美| 久久99精品无码一区二区| 精品妇女一区二区三区下囿高潮 | 久久99久久99久久综合| 特级西西444www无码视频免费看 | 少妇一区二区三区在线视频| 69国产精品久久久久久人妻 | av动漫在线观看一区二区| 欧美+在线+亚洲| 亚洲色图欧美视频另类视频 | 中文字幕+成人av| 粗大猛烈进出高潮视频免费看| 中文字幕++中文字幕明步| 日本很黄色的网站一区免费观看| 很色很爽很黄裸乳视频| 夫妻高潮淫语对白视频| 国产女主播白浆在线观看| 国内大量揄拍人妻精品视频| 亚洲va中文字幕不卡无码| 一区二区三区视频在线| 免费+成人+国产| 日韩精品无码一区二区三区免费| 深夜影院在线观看| 伊人久久综在合线亚洲2019| 无遮挡国产高潮视频免费观看| 欧美日韩国产高清一区二区三| 国产成人久久精品麻豆网| 高潮+白浆+国产| 午夜福利亚洲专区欧美专区| 国产麻传媒精品国产AV| 国产色在线观看免费视频| 韩国做aj的视频大全| 日本一区二区三区黄色片v| www.97色色| 亚洲18禁私人影院| 国产精品人妖ts系列视频| av观看免费在线| 国产麻豆一精品一av一免费| 原创婹农村熟女v88Av| 国产精品久久久久久成人| 亚洲精品国产av成拍色拍婷婷 | 欧美一级a视频免费在线观看| 日韩东京热无码免费视频| 亚洲av片一区二区三区久久| 亚洲日韩在线观看免费视频| 在线最新av免费费观看| 成人精品视频在线观看不卡| 国产农村一国产农村无码毛片| 按摩+无码+磁力链接| 婷婷激情五月av在线观看| 国产精品av免费观看| 国产一区二区在线观看视频免费 | 欧美日本一区二区三区| 91视频88av| 国产妇女馒头高清泬20p多毛| 欧美日韩中文麻豆| 亚欧洲在线视频免费观看| 茄子视频国产在线观看| 国精产品乱码视频一区二区| 日本国产一区二区三区| 国产午夜亚洲精品不卡下载| 少妇高潮7777777丫乄| 国产欧美精品一区二区三区三| 久久亚洲精品人成综合网| 青柠影院在线观看高清电视剧荣耀| 中文字幕一区二区三区四区视频| 国产VA免费精品高清在线 | 久久中文字幕一區二區三區| 97精品无人区乱码在线观看| 一区二区三区四区欧美极品| 色偷偷中文字幕久久综合| 人妻丰满熟妇av无码区app| 日本卡2卡3卡4卡5卡精品视频| 天堂资源wwwav啪啪| 按摩+无码+磁力链接| 中文字幕+乱码+中文字幕在线观看 | 精品女二区三区激情免费视频| 国产精品情侣呻吟对白视频| 日韩免费码中文在线观看| 无码人妻精品一区二区三区9厂 | 国产精品99久久久久久有的能| 日韩亚AV无码一区二区三区| 国产亚洲视频中文字幕不卡| 国产麻豆一精品一av一免费| 自拍视频国产三级| 91精品国产综合久久久蜜臀九色 | 麻豆国产97在线精品一区| 国产高清视频一区| 午夜免费福利美女刺激视频| 久久精品色婷婷国产网站| 精品国产麻豆免费人成网站| 欧美午夜福利理论片久久| 久久久久久久久久久久中文字幕 | 四虎精品国产永久在线观看 | 99久久国产综合一区二区| 国产精品久久久天天影视香蕉| 熟妇~x88AV翔田千里| 国产av精国产传媒| 97久久免费视频| 国产黑丝在线观看| 久久人人做人人爽人人av| 精品国产av色欲果冻传媒| 精品视频在线免费观看一区 | 亚洲精品无码不卡| 婷婷俺也去俺也去官网| 91在线观看18| 美女视频一区二区| 国产精品久久久精品影院| 无码+蓝衣+磁力| 少妇高潮惨叫久久久久| 日本久久高清免费观看| 丰满女房东的奶真大| www九九热com| 亚洲欧美不卡人妻中文字幕| 最新版天堂中文在线| 亚洲自偷自拍另类第1页 | 色综合天天综合网国成人网| 麻豆精品久久久久久久99蜜桃 | 近親伦一区二区三区| 成人+高潮+国产| 国产精品一区波多野结衣| 美腿制服丝袜国产亚洲| 亚洲欧洲在线观看| 粉嫩99精品99久久久久久桃色| 91绿帽黑人系列一区| 少妇含泪肉体偿还| av天堂中av世界中文在线播放 | 亚洲色18禁成人网站www| 亚洲精品久久久久久蜜臀| japanese色国产在线看免费| 成人做爰高潮A片免费视频| 成人国产av一区二区三区| 精品精品精品国产自| 一本一道久久综合狠狠老| 国产免费拔擦拔擦8x高清在线人| 国产一区福利在线免费视频| 日韩毛片+高清+下载| 中文字幕++中文字幕明步| 国产亚洲精品久久www| 中文字幕制服丝袜第57页| 亚洲+在线+国产| 婷婷嫩草国产精品一区二区三区| 国产毛片女人高潮叫声| 亚洲成人久久国产精品| 久久天天躁夜夜躁狠狠85台湾| 成年人免费观看国产精品视频| 久久91精品国产91久久蜜月| 噜噜噜亚洲精品在线观看 | av无码av天天av天天爽仙踪林| 国产精品二区视频| 狠狠综合久久av一区二区| 久久天天躁狠狠夜夜躁2020| 国产九色在线播放九色| 国产又色又爽又高潮免费| 国产老头和老太xxxx视频| 精品亚洲精品第—区| 香蕉精品视频在线观看| 亚洲成人在线免费观看| 亚洲男人天堂一区在线观看| 久久精品国产一区二区| 躁老太老太骚BBXXHD| 天天躁日日躁aaaxxⅹ| 日本在线看片免费人成视频 | 国产三级精品三级在线| 久久aⅴ人妻少妇嫩草影院| 免费+国产+日本| 亚洲成av人片一区二区三区| 婷婷综合久久一区二区三区武松| 免费在线观看91精品美女| 午夜乱码爽中文一区二区| 午夜永久精品视频在线看| 日韩一区欧美激情校园春色| 国产人妖在线视频| 亚洲日韩av一区二区三区中文 | 漫画免费观看漫画大全| 冢本六十路の高齢熟女| 韩漫免费漫画在线观看方法| 猫咪免费人成网站在线观看| 四虎影视永久免费观看在线| 欧美成人在线网站| 国产成人avxxxxx在线观看| 久久国产精品伦理片国产乱| 亚洲国产色婷婷久久精品| 国产日韩在线欧美一区二区| 国产精品中文字幕有码在线观看| 少妇荡乳情欲办公室毛片一区二区 | 久久精品这里热有精品| 国产高清一区二区三区视频| 美女黄色视频网站入口在线看| 日韩一区中文字幕在线观看 | 亚洲精品女同激情在线观看| 男人天堂亚洲国产都在搜| 强伦少妇A片视频| 亚洲啪啪aⅤ一区二区三区9色| 亚洲精品成人无码中文毛片不卡| 美女羞羞视频网站| 琪琪女色窝窝777777| 国产女人叫床高潮视频在线观看 | 九九精品在线观看| 久久精品道一区二区三区| 成人高清免费观看| 黄色免费观看网站| 国产薄丝脚交视频在线观看| 国产婷婷av片在线观看| 久久国产午夜精品理论片| 亚洲va在线va天堂xx| 99福利资源久久福利资源| 野外强伦姧女教师高清在线| 99久久综合狠狠综合久久AⅤ| 国产精品视频在线观看| 日本无遮挡吸乳视频| 国产真实自在自线免费精品| 色一情一乱一乱一区免费网站| 久久精品苍井空精品久久| 一级肉体全黄裸片| 亚洲五月丁香综合视频| 亚洲一卡二卡三卡四卡无卡姐弟| 六夫共妻高H喷汁呻吟NP| 国产一区二区三区在线看麻豆| 俺去啦俺来也五月天| 日韩人妻无码精品一专区二区三区| 亚洲一区二区三区欧美| 妺妺窝色77777777野大粗| 男人天堂视频在线观看| 2022av视频| 亚洲+欧洲+久久av| 黄网站色视频免费观看美女| 蜜桃无码一区二区三区| 日本日本熟妇中文在线视频| 国产精品亚洲w码日韩中文| 天堂网www在线最新版资源| 亚洲国产欧美一区二区三区丁香婷| 精品无码成人久久久久久| 80s+毛片+免费观看| 免费在线观看一区| 黄色网页在线播放| 国产精品久久久久久久久久吹潮| 国产成人a在线观看网站站 | 中文字幕+在线观看+永久| 中文文字幕中文字幕在线中文乱码| av中文字幕+潮喷+在线观看| 国产精品九九九久久综合| 国内精自线一二三四在线看| 嘟噜噜嘟噜噜跟大妈一样| 色久综合网精品一区二区| 久久久久久国产精品美女| 全部露出来毛走秀福利视频| 国产+高潮+自拍| 久久精品亚洲精品国产色婷| 国产成人av网站网址| 黄色软件网站入口| 欧美精品亚洲国产| 国产精品美女www爽爽爽爽| 成人又黄又爽又色的网站| 亚洲老熟女av一区二区| 中文字幕制服丝袜第57页| 丰满双乳峰白嫩少妇成人网站| 人妻av一区二区三区精品| 亚洲欧美一级久久精品国产特黄| 69视频免费观看| 国产黄片av一区二区三区四区| 亚洲综合色aaa成人无码| 91精品国产综合久久久蜜臀九色| 成人18+免费观看视频| 无码h黄肉动漫在线观看网站| 国产精品无套呻吟在线| 中文毛片无遮挡高清免费| 欧美伊香蕉久久综合网另类| 国产+喷水+白浆| 91久久精品日日躁夜夜欧美| 国产精品欧美精品日韩专区一乛方| 精品中文字幕在线观看| 美女网站免费一区二区在线观看 | 尤物在线观看网站视频免费播放| 国产精品精品久久久| 先锋啪啪A片中文字幕| 久久久av一区二区三区| 伊人久久精品无码av一区 | 国产精品主播在线| 久久老子午夜精品无码怎么打| 日韩+欧美+高潮| jizz亚洲女人| 欧美日韩国产高跟丝袜后入| 亚洲国产中文欧美日韩另类| 秋霞无码久久一区二区| 高湖毛片7777777毛片| 国产精品视频免费看人鲁| 亚洲国产精品第一区二区| 日日噜噜夜夜狠狠久久丁香五月 | 老牛影院在线观看免费下载电视剧 | 亚洲精品久久酒店| 国产在线不卡精品网站| 国产精品一区二区麻豆| 亚洲中文字幕人成乱码| 欧美亚洲制服丝袜在线| 欧美成人午夜剧场| 黑茎大战欧美白妞高潮喷白欤| 亚洲精品午夜国产va久久成人| 在线精品一区二区三区| 亚洲第一成人av| 日韩欧美一区二区三| 中文字幕在线播放不卡| 精品国产露脸久久av| 99福利资源久久福利资源| 欧美黑人欧美精品刺激| 亚洲乱码国产乱码精品精小说| 成人又黄又爽又色的网站| 521av在线视频中文字幕| 男人+高清无码+一区二区| 亚洲无线码在线一区观看| 97午夜理论片在线影院| 日韩精品免费一区二区三区竹菊| 国产成人精品亚洲精品| 无码人妻丰满熟妇区毛片樱花视频| 日韩欧美在线一区| 美女被草+在线观看| 亚洲va国产日韩欧美精品色婷婷| 一区二区三区精品视频免费播放| 亚洲黄色免费观看| 色综合久久88色综合天天人守婷| 国产精品zjzjzj在线观看| 欧美日韩免费高清一区色橹橹| 日韩永久精品视频免费wwwa| 国产日韩欧美一区在线播放| 少妇荡乳情欲办公室毛片一区二区| 亚洲国产精品一区第二页| 亚洲人成网站18禁止中文字幕| 精品乱码蜜桃久久久久久| 亚洲一区久久精品东京热| 国产真实自在自线免费精品| 国产精品黄色av| 亚洲天堂2017无码| 亚洲精品乱码久久久久久按摩| 99精品视频一区在线观看| 一区二区三区四区亚洲| 在线观看成人小视频| 一级做a免费观看大全| 亚洲色18禁成人网站www| 无码一区二区三区视频| 亚洲色中文字幕无码av| 久久久麻豆一区二区三区四区 | 亚洲乱亚洲乱妇无码麻豆| 色婷婷一区二区三区四区| 中文字字幕在线中文乱码| 久久人人97超碰caoporen| 1024精品久久久久亚洲| 国产精品久久久久久久一级 | 女人高潮奶头翘起来了| 成人国产免费观看| 无码专区狠狠躁天天躁| 国产亚洲日韩欧美另类第八页 | 亚洲三区在线观看内射后入| 国产在线激情小视频国产馆| 国产素人在线观看人成视频| 国产青草视频在线观看免费影院| 亚洲中文成人中文字幕| 乱码一区二区三区水牛| 日韩视频欧美国产一区二区三区| 亚洲暴力色三八AV综合网| 午夜在线不卡精品国产| 成人在线免费高清视频| 成人H动漫精品一区二区无码软件| 中文字幕国产在线| 美女高潮穿丝袜久久国产精品 | 国产乱人伦偷精品视频免下载| 17c.com喷水少妇| 人妻av中文字幕久久| 午夜国产精品入口| 国内精品久久久久影院薰衣草| 欧美日韩激情在线观看免费| 午夜精品第一区第二区第三区| 日本地区不卡高清更新二区| 一级香蕉视频在线观看| 665566综合中文字幕在线| 亚洲+视频+免费| 99久久久久免费精品国产| 精品国产乱子伦一区二区三区最新章节 | 91兰州熟女富婆露脸| 蜜臀av在线播放一区二区三区| 久久免费精品国自产拍网站| 色久综合网精品一区二区| 伊人色综合久久天天网| 日韩欧美精品一区二区三区四区| 亚洲天堂成视频在线观看| 成人免费无码大片a毛片18| 国产又粗又黄的视频免费 | 九九精品视频在线观看| 久久精品国产99久久久古代| 人人爽久久涩噜噜噜av| 妺妺窝人体色www聚色窝| 日本欧美一区二区三区乱码| 精品亚洲国产成人av| 日本黄色视频一区二区免费 | 国产2021精品视频免费播放| 特级西西444WWS高清视频| 亚洲国产精品久久久久秋霞小 | 成人午夜免费网站| 日本xxxxl码在中国是几码| 久久99国产66精品久久| 日韩欧美高清字幕在线观看| 日韩欧美成人网站| 久久精品国产精品| 免费人成再在线观看视频| 99精产国品一二三产品香蕉| 青青草国产在线视频综合| 亚洲欧美精品午睡沙发| 亚洲一区二区三区高清av| 亚洲国产天堂视频在线播放| 噜噜噜亚洲精品在线观看| 亚洲精品欧美精品在线观看视频| 国产91精品久久久久91黄色| 亚洲一区二区三区国产中文| 巨爆乳无码视频二区涩漫| 欧美日韩高清在线| 18成人福利网站在线观看| 亚洲精品av中文字幕在线在线 | 香蕉视频在线网址| 亚洲精品国产av成拍色拍婷婷 | 国产精品妇女久久久久久| 大象一区一品精区搬运机器| 亚洲熟妇AV一区二区三区| 亚洲中文av字幕在线观看| 精品123区免费视频国产成人| 男女乱淫免费视频一区二区三区| 免费观看一区二区三区视频| 白嫩老师肉体videosd| 亚洲最大日夜无码中文字幕| 蜜桃传媒人版在线观看免费| 动漫+有码+在线视频| 国产亚洲人成网站在线观看| 闷骚艳岳的婬乱生活视频| 丰满少妇人妻久久久久久| 国产美女精品中文网蜜芽宝贝| 五月婷婷激情小说| 国产乱人伦偷精品视频不卡| 青草久久人人97超碰| 少妇做爰又色又紧夜视频 | 日韩精品在线视频观看| 亚洲乱码精品一区二区三区国产| 九一麻花传剧mv免费观看影视大全| 久久久久国产aa一区二区三区| 午夜欧美福利视频一区二区| 午夜福利精品视频免费看| 亚洲熟妇av一区二区三区痴汉| 免费+五码+国产| 久久久久久国产精品美女| 全国最大成人免费视频| 国产主播一区二区不卡在线观看 | 国产成人久久精品区一区二区| 欧美精品久久久久久久久大尺度| 黄色小视频在线看| 久久久国产精华液999999| 亚洲成a人片在线观看无遮挡 | 欧美精品午夜一区二区三区| 亚洲码欧美码一区二区三区| www久久精品亚洲国产| 色婷婷国产精品高潮呻吟av | 国产自偷亚洲精品页65页| 色噜噜狠狠色综合日日| jizz国产免费| 久久人妻天天av| japan丰满人妻videoshd高清| 国产人交视频xxxcom| 欧美成人免费在线观看| 国产精品第52页| va亚洲va天堂va视频在线| 成人+国产+免费| 动漫+有码+在线视频| 欧美成人精品高清在线观看| 99re视频在线| 国产999视频在线观看| 91精品成人免费国产片| 精品国产av色欲果冻传媒| 中文字幕人妻丝袜成熟九色| 国产美女久久久亚洲综合| 五月婷婷在线视频观看| www欧美国产丝袜一区二区| 久久精品国产亚洲av成人文字| 国产亚洲综合一区柠檬导航| 国产极品白嫩精品| 波多野结衣+中文字幕公交车催情| 在线观看+成人免费视频+不卡 | 亚洲色成人网站www永久尤物 | 国精品午夜福利视频2021| va在线看国产免费| www.精品综合久久久久| 国产丝袜在线观看视频| 另类+女同+影音先锋| 欧美日一区二区三区 | 亚洲+国产+激情| 高清一区二区三区日本久| 国产精品69久久久久不卡| 久久久国产精品一级夜夜爽| sm+另类+在线视频| 成人av免费观看| 成·人免费午夜无码视频蜜芽 | 真实粗暴交videos尖叫| 天天狠天天添日日拍捆绑调教| 亚洲欧美国产综被窝蜜臀| 久久99精品久久久久久园产越南| 88国产精品视频一区二区三区| 波多野结衣被躁120分钟小说| 亚洲天堂2021av| 日韩亚洲国产中文字幕欧美| 亚洲av日韩av东京热| 日韩激情一区二区三区| chinese开小嫩苞videos| 99国产精品久久久久久久久久| 午夜乱蜜桃久久久乱| 激情综合婷婷色五月蜜桃| 99福利资源久久福利资源| 成人毛片视频免费看| 欧美又粗又长又色又猛视频 | 日韩国产欧美激情在线视频| 久久国产亚洲精品赲碰热| 9.1+成人+看片| 91美女诱惑国产精品视频| 亚洲欧美一区二区精品久久久| 手机av在线不卡| 人妻+种子+磁力链接| 国产实拍会所女技师在线观看| 亲近乱子伦免费视频| av中文字幕在线免费观看| 欧美另类一区二区| 国产精品久久久久久久久久吹潮| 成人免费视频网址| 成人av免费观看| 久久久久久臀欲欧美日韩| 国产日韩综合av在线观看一区| 国产成人精品亚洲精品| 裸体+国产+免费| .17c嫩嫩草色视频| 国产高清一区二区三区四区| 亚洲av无码一区二区乱子仑| 熟妇人妻无乱码中文字幕| 高潮+喷水+免费| 99久久免费国产精品6| 国产寡妇精品久久久久久| 国产成人av在线麻豆影院| 九色手机在线视频播放| 九九九久久久精品| 男人和女人在床的app| 2020久久香蕉国产线看观看| 磁力天堂torrent在线| 久久人妻av一区二区软件| 91av天堂在线观看视频| 理论片+亚洲+欧美| 2021久久超碰国产精品最新| 一本大道在线一本久道视频 | 久久久久久国产精品频道| 亚洲国产成人av片在线播放 | 不卡+一区二区视频+日本| 午夜国产av新品一区二区| 日韩毛片+高清+下载| 天天鲁一鲁摸一摸爽一爽| 国产免费观看高清电视剧在线观看| 亚洲熟妇av一区二区三区痴汉| 一本色道久久综合亚州精品蜜桃| 桃色视频高清亚洲一区二区在线| 欧美一区二区三区大片| 欧美精品一区二区蜜臀亚洲| 一区二区三区国产在在线播放| 亚洲一区二区影视| 国产1024成人精品视频| 极品少妇被后入内射视| 伊人精品成人久久综合| 日本最新免费二区| 精品一区二区三人妻视频 | 国产成人精品白浆免费视频试看 | 少妇搡xxxx少妇搡xxxx| 日韩高清亚洲日韩精品一区二区| 精品亚洲中文字幕东京热网站| 一本大道东京热无码aⅴ| 国产一线天粉嫩馒头极品av| 国产成人A∨在线观看不卡| 国产伦精品一区二区三区妓女原神| 瑜伽+无码+thunder| 一本加勒比hezyo爆乳| 日韩精品久久久久久希崎杰西卡| 国内大量揄拍人妻精品视频| 日日噜噜夜夜狠狠久久无码区| 成人国产精品久久久按摩| 欧美精品一区二区视频| 亚洲精品手机在线观看| 中文字幕在线观看网址| 少妇搡xxxx少妇搡xxxx| 老司机免费的精品视频| 四虎成人精品永久网站| 国产又黄又猛又粗又爽的a片动漫 国产精品99久久免费观看 | 麻豆妓女爽爽一区二区三| 精品日韩国产一区二区三区| 巨大荫蒂视频欧美另类大| 一区二区三区国产日韩欧美在线 | 韩国中文字幕在线观看| 片涩涩涩的视频网站视频| 欧美成人精品一区二区三区在线观看 | 成人精品一区二区三区网站| 国产一区精品va在线播放| 亚洲日本在线在线看片4k超清| 可以在线观看免费av的网站| 国产又粗又黄的视频免费| 久久久噜噜噜久久久精品| 日本欧美大码a在线观看| 亚洲国产麻豆精品系列av| 成人免费一区二区三区视频软件| 亚洲日本在线观看| 久久这里只有精品久久91| 樱桃国产成人精品视频| 成人av婷婷一区二区三区| 国产黄又爽免费在线观看的视频 | 99久久婷婷国产综合精品| 亚洲精品中文字幕国产精品| 在线免费看av网站| 教官用舌头猛烈进入丰满少妇视频| 91精品久久久蜜桃网站| 成人美女视频在线观看| 免费+国产+白浆| 日本无卡码高清免费v| 亚洲精品手机在线观看| 骚虎成人免费99xx| 无码人妻丰满熟妇啪啪网站| 伊人久久大香线蕉午夜av| gav成人网免费免播放器播放 | 国产免费人成视频在线观看| 丁香婷婷综合激情五月色| 中文字幕亚洲欧美在线观看| www黄色在线观看| 人人超碰91尤物精品国产| 天天狠天天天天透在线| 手机免费看片AV永久看片国产日韩| 国产黄a三级三级三级av在线看| 粉嫩一区二区三区| 国产又黄又粗又爽又免费| 《交换3》金智媛演技评价| 国产末成年av在线播放| 色视频免费在线观看| 啊啊啊一区二区在线观看| 中文字幕资源在线| 国内精品伊人久久久久影院麻豆| 国产中文字幕免费在线观看| 九九99久久精品综合| 国产成人午夜福利在线观看| 91久久精品一区二区婷婷| 日本中文字幕精品| 91精品福利视频| 亚洲+日韩+专区| 欧美一级视频免费观看| 91中文字幕在线| 人妻少妇精品中文字幕av| 黑人大鷄巴精品A片| 欧美激情一区二区视频| 毛片视频在线免费观看| 国产午夜在线播放| 国产一区二区自拍视频| 日韩欧美一区二区在线| 无码中文字幕色专区| 亚洲天堂第一在线视频看看| 久久精品国产亚洲av水密被窝| 色黄网站aaaaaa级毛片| 国产一区二区三区四区| av成人在线免费观看| 三年成都中文在线观看免费版| 2021国产精品午夜久久| 91pornyⅰ九色| 久久久精品午夜免费不卡| 亚洲婷婷五月激情综合APP| 欧美中文字幕在线| 国产老师开裆丝袜喷水视频| 亚洲另类欧美综合久久图片区| 国产中文字幕免费在线观看| 我要看欧美一级黄色录像| 亚洲精品久久久久午夜福禁果tⅴ 国产精品青草综合久久久久99 | 成人嫩草97A片| 西西人体44WWW高清大胆| 69人妻精品丰满熟女区| 国产免费观看高清电视剧| 在线视频+亚洲+人气| 欧美日韩免费观看一区=区三区| 91精品福利在线观看| 欧美精品99久久久久久人| 吃瓜爆料+每日大赛| 青青青草视频在线| 五月狠狠亚洲小说专区| 最近中文字幕++中文 | 亚洲的天堂av无码| 亚洲精品国产高清一线久久| 狠狠躁18三区二区一区| 蜜臀av国内精品久久久| 男人的天堂免费视频| 国产精品伊人久久久久久| 欧美精品久久久久a片18的试看| 国产二区交换配乱婬| 国产精品亚洲综合色拍| 国产精品视频+白浆+免费视频| 国产+日产+欧美| 国产色播色爽看到爽| 久久国产成人亚洲精品影院老金| 国产午夜精品18| 26uuu亚洲国产欧美日韩| 91久久久久久国产精品| 日韩a∨精品日韩在线观看| 中文字幕+乱码+中文字幕在线观看 | 欧美日韩国产在线人成| 日韩和的一区二在线| 国内揄拍高清国内精品对白| 国产成人精品综合| 亚洲高清视频一区二区三区| 亚洲av主播在线观看网| 日本精品一区二区三区无码| 欧美aaaa视频| 狠狠躁天天躁无码中文字幕图| 成人动漫在线观看免费| 久久99精品久久久久久hb| 亚洲免费av网站| 视频一区二区三区在线观看| 日韩欧美精品一区二区三区四区| 国产日韩精品一道在线观看| 精品国产亚洲av制服丝袜高跟| 国产一区二区三区免费在线| 天堂网www中文在线| 日韩精品无码免费专区午夜不卡 | 青草影院内射中出高潮| 国产av综合第1页| 动漫精品啪啪一区二区三区| 免费国产精品黄色一区二区| 久久久91精品国产一区二区精品| 久久久www成人免费看片| 国产女人久久精品视| 黄色小视频在线观看| 国产精品99久久最新视频| 亚洲一区二区视频在线看| 日韩三级片在线播放| 亚洲成色A片77777在线小说 | 99热99这里只有精品| 黑人与中国少妇xxxx视频在线| 亚洲国产成人精品女人久久久逼| 无码人妻丰满熟妇啪啪网站| 日本免费更新一二三区不卡 | 老汉tv永久视频福利在线观看| 亚洲日韩色欲色欲com| 亚洲一卡二卡在线| 免费+国产在线观看| 洋妞+国产+在线播放| 原创婹农村熟女v88Av| 人妻共享互换多p| 国产2021精品视频免费播放| 欧美日韩国产高清一区二区三| 欧美日本国产调教一区二区| 爽交换快高h中文字幕| 狠狠色狠狠色综合日日小说| 日本地区不卡高清更新二区| 国产精品区一区二区三| 国产亚洲精品第一综合不卡| 国产+免费+麻豆| 欧美日韩国产一区二区三区播放| 亚洲第一区欧美国产不卡综合 | 成人做爰A片免费看网站草莓| 91天天综合免费看国产| 色综合色天天久久婷婷基地 | 成人做爰a片免费看网站找不到了 另类图片+动漫+日韩 | 日韩午夜激情视频| 国产精品中文久久久久久99清纯| 99久久国产综合一区二区 | 欧美精品久久一区二区| 有码+欧美+国产| 午夜精品a片一区二区三区老狼 | 91精品久久久蜜桃网站| 亚洲一区二区精彩视频在线观看 | 亚洲va欧美va天堂v国产综合| 在线看人妻视频中文字幕| 中文在线高清字幕电视剧第三季预告 | 日韩a无v码在线播放免费| 亚洲精品国产精华液| 91精品aa一区二区三区| 久久人人97超碰caoporen| 国产成人精品午夜福利在线观看 | 免费在线观看亚洲| 真实新婚偷拍Chinese| 婷婷91麻豆精品国产红杏| 亚洲精品一线二线三线无人区| 国产一区二区三区久久久久久久 | 国产黑丝在线视频| 少妇爽到呻吟的视频| 免费播放高清毛片A片色情天雨水多 | 国产高清在线不卡| 麻豆Chinese新婚XXX| 爆乳喷奶水无码正在播放| 五月丁香久久丫婷婷一区不卡| www国产+欧美| 午夜福利精品kkk在线| 欧美变态另类刺激| 日本大香蕉高清在线观看| 无码av永久免费专区麻豆| 96亚洲精品久久久蜜桃| 99国产超薄肉色丝袜交足的后果| 精品久久久久久久久免费视频 | 北岛玲一区二区三区四区| 久久午夜国产精品www忘忧草| 少女18岁免费观看高清电视剧 | 少妇大胆瓣开下部自慰| 亚洲成人精品久久久国产精品| 亚洲中文字幕精品久久久久久动漫| 无码专区人妻系列日韩精品少妇| 打屁股+do+调教文| 五月婷婷丁香久久| 辽宁熟女高潮狂叫视频| 欧美日韩国产在线人成| 国产高清狼人香蕉在线| 国产成人精品免费高潮视频| 麻豆天天躁天天揉揉av| 欧美精品亚洲国产| 国产日产韩国精品视频| 偷偷要色偷偷中文无码| 亚洲巨乳久爽一二三区| 日韩区一区二区三区视频| 青青草国产在现线免费观看| 最日本中文字幕中文翻译歌词 | 夜夜添狠狠添高潮出水| 日韩精品亚洲人成在线观看| 无码AⅤ精品一区二区三区| 日韩黄色一级网站| gogogo高清国语完整| 精久国产av一区二区三区孕妇| 综合激情久久综合激情| 欧美亚洲国产手机在线观看| 少妇特黄一区二区三区| 日韩欧美精品一区二区三区四区| 真实乱视频国产免费观看| 麻豆国产成人av高清在线| 1000部丰满熟女富婆| 中文有无人妻vs无码人妻激烈 | 国产69久久久欧美一级| 手机在线视频国产第二页| 亚洲乱码国产一区三区| 亚洲精品久久久久一区二区三区| 成熟亚洲日本毛茸茸凸凹| 日韩69永久免费视频| 国产精品一区在线观看www | 亚洲日本乱码一区二区在线二产线| 国产欧美日韩美女精品一区| 美女网站一区在线观看免费国产 | 涩涩涩蜜桃日韩一区二区| 婷婷精品综合福利在线观看视频| 最近在线更新8中文字幕免费| 无码人妻丰满熟妇区网站| 天堂av无码大芭蕉伊人av孕妇| 日韩欧美中文字幕视频在线看| 亚洲精品一区二区三区中文字幕| 日本人妻人人人澡人人爽| 无码+大胸+磁力| 国产精成a品人v在线播放| 在线亚洲精品国产成人av剧情| 国产精品无套呻吟在线| 亚洲伊人精品伊人7777| 成在线人免费视频播放| 高清亚洲中文字幕在线观看 | 亚洲av乱码国产精品观看麻豆| 国产精品线在线精品| 久久久国产免费观看视频| 日本+国产+欧美| 91久久久精品国产一区二区蜜臀| 国产蝌蚪视频在线观看| 日本日本熟妇中文在线视频| 又粗又黄又爽视频免费看| 国产福利久久一区二区久久| 国产少女免费观看高清电视剧大全可 | 国产三级aⅴ在在线观看| 欧美视频免费观看午夜在线| 青草影院内射中出高潮| 四虎影视永久免费观看在线| 亚洲婷婷五月综合狠狠app| 国产资源在线观看| 日本韩国欧美一区二区三区| 亚洲一久久久久久久久| 美女黄色免费网站| 亚洲综合无码一区二区三区不卡 | 国产激情久久久久99视频| 91国偷自产中文字幕久久| 国产黄a三级三级三级av在线看| 国语对白新婚少妇在线观看| 国产精品久久久久一区二区国产| 国产激情无套内精对白视频| 女人的天堂a国产在线观看| 成人在线手机视频| 国产+亚洲+美女| 中文字幕日产乱码一二三区| 久久免费看少妇高潮毛片| 强开小嫩苞一区二区三区网站| 中文娱乐网2222官网入口| 天天看片+天天av+免费观看| 四虎视频在线精品免费网址| 岛国精品123区无码| 国产福利视频一区| 亚洲综合五月天婷婷丁香| 久久久久国产aa一区二区三区| 成人18+免费观看视频| 国产又大又粗又猛又爽的视频| www.17c嫩嫩草色视频蜜桃| 日韩1区3区4区第一页| 麻豆Chinese新婚XXX| 国产精品一av一免费爽爽| 美女18禁一区二区三区视频| 怡红院最新免费全部视频| 国产又色又爽又黄的网站在线| 国产成人久久精品麻豆网| 真人做爰高潮全过视频| 国产成人精品无缓存在线播放| 91麻豆国产自产在线观看亚洲| 青青草视频在线观看亚洲| 鲁大师日韩MV在线观看| 久久婷婷成人综合色怡春院| 亚洲+综合久久+成人av| 美女+免费+国产在线| 99久久婷婷国产综合精品| 中文字幕在线看高清好看的电视剧| 日韩大片在线永久免费观看网站| 久久免费少妇做爰| 久久俺也去丁香综合色| 韩国三级欧美三级国产三级| 人妻精品国产一区二区| 国产精品免费视频网站| 国产精品久久久久久久模特人妻 | 双乳奶水饱满少妇视频| 亚洲真人久久99精品| 国产呦交精品免费视频| 日韩三区在线观看| 久久精品苍井空精品久久| 一区二区三区四区在线免费视频| 国产在线不卡精品网站| 国产亚洲网曝欧美台湾丝袜| 亚洲卡一卡2卡3卡4精品| 日本+视频+亚洲| 全黄久久久久a级全毛片| 日韩精品视频在线观看三区| 人人妻人人澡人人爽曰本| 高清国产一区二区三区四区五区 | 国产精品久久久久一区二区国产| 亚洲精品无码专区| 亚洲国内精品自在线影院牛牛| 蜜桃精品免费久久久久影院| www.美色吧.com| 一区二区免费视频| 999精品视频在线| 美女黄色免费网站| 国产情侣在线播放| 淫臀艳妇(全)王雪琴| 欧美+日本+国产| 在线观看的av网址| 中国极品少妇XXXXX1314| 免费国产又色又爽又黄的网站 | 国语对白刺激真实精品91| 日本天天日天天干| 成人三级视频在线观看一区二区| 99久久婷婷国产综合精品草原 | 国产精品视频麻豆| 成人国产精品久久| 五月激激激综合网色播| 在线观看日韩中文字幕| 少妇太爽了在线观看视频| 特大巨黑吊xxxx高潮| 中文字幕久久久人妻无码| www国产+欧美| 亚洲丝袜制服在线观看视频| 精品视频在线观自拍自拍| 欧美群交射精内射颜射潮喷| 天堂一区二区在线免费观看| 精品国产一区二区三区四 | 亚洲美女视频之国产精品| 51成人免费影院| 久久久久久久久久国产视频| 菲儿+激情+影音先锋| 国产+欧美+精品| 日韩色在线精品视频观看| 中文字幕在线视频第一区二区| 乱码精品国产成人观看免费| 亚洲综合区图片小说区| 丁香色欲久久久久久综合网| 国产又猛又粗又爽又黄91 | 精品国产第一区二区三区有码| 日韩欧美aaaa羞羞影院| 久久久91精品国产一区二区精品| 国产一级特黄毛片| 粗暴蹂躏av一区二区| 久久久精品小视频| 一本在线免费视频| 好男人在线影院官网www| 窝窝人体艺7777777| 国产一区二区三区免费高清在线播放| 国模冰莲小泬喷潮337p| 亚洲人成色在线观看| 国产国产精品久久久久久久| 国产午夜亚洲精品不卡下载| 无码av中文一二三区 | 麻豆免费在线观看视频| 国精产品99永久一区一区| aaa一级黄色片| 精品国产日韩欧美一级一区二区三区| 天天综合天天做天天综合| 色丁狠狠桃花久久综合网| 新的天堂在线观看视频免费| 亚洲精品国产主播在线三区| 免费污污污完整版网站| 在线播放五十路熟妇| 一本到综在合线伊人| 国产精品久久久久久亚洲色| 在线免费观看国产精品| 天天爽夜夜爽人人爽qc| 茄子视频ios在线观看| 久久99精品国产麻豆| 国产成人短视频在线观看| 成人国产精品免费网站| www日本com| 国产黄a三级三级三级av在线看| 又色又爽又黄又无遮挡的网站| 男人天堂视频在线观看| 成人乱淫av日日摸夜夜爽节目| 深夜国产福利小视频在线观看 | 亚洲欧美日韩国产一区二区在线| 日韩成人av福利在线| 亚洲欧洲精品成人久久曰影片| 伊人久久大香线蕉亚洲五月| 久久视频免费在线观看| 玖玖无码中文字幕五月天| 国产麻豆91欧美一区二区| 精品视频一区二区三区| 中文字幕亚洲欧美日本懂色| 婷婷成人综合一区二区三区| 丰满少妇人妻久久久久久 | 欧美成人精品一区二区三区在线观看| 国产最新精品自产在线观看| 中文字幕在线观看日本| 亚洲精品乱码久久久久蜜桃 | 国产又粗又硬又大爽黄| 国产日韩欧美区二区三区四区| 国产情人综合久久777777| 成人精品视频网站| 亚洲免费在线观看| 久久精品视频久久| 亚洲欧美中文字幕手机在线观看| 国产精品自拍在线观看| 成人午夜三级视频| 亚洲av色噜噜噜久久久女同| 精品国产又粗又猛又爽又黄| 久久精品国产亚洲av久野外| 日韩精品+一区二区+av在线| 午夜精品久久久久久久四虎美女版 | 亚洲精品成人无码中文毛片不卡 | 18禁美女国产精品久久久久久| 久久影视久久午夜| 无码+蓝衣+磁力| 国产不卡av免费在线观看| 亚洲美女视频网站| 免费午夜福利不卡片在线播放| 日韩中文在线字幕| 精品人妻久久久久久888| 亚洲一区二区三区香蕉| 日韩精品视频免费在线观看 | 天美麻花果冻视频大全英文版 | 国产黄片av一区二区三区四区| 无码一区二区三区视频| 国产美女免费无遮挡网站| 日韩欧美亚洲国产精品幕久久久 | 亚洲欧美日韩在线观看一区二区三区| 91娇妻迎合黑人大属| 久久精品噜噜噜成人88aⅴ| 欧美日本二区三区四区人气| 久久综合九色综合欧美狠狠 | 日本+熟女+磁力链接| 人妻被按摩到潮喷中文| 雯雯的肉奴生活1—48| 国产老A熟妇三区| 台湾av+在线播放| 在线看人妻视频中文字幕| 亚洲精品无码av中文字幕| 日本中文字幕亚洲乱码| 国产一区+欧美+综合| 国产亚洲综合一区柠檬导航| 国产在线精品免费| 少妇精品无码一区二区免费视频| 国产+日产+欧美在线观看| 十八岁成年免费观看电视连续剧法国| 国产欧美拍视频免费在线观看| 精选av一区二区三区| 78成人天堂久久成人| 天干夜天干夜天天免费视频| 亚洲+国产+专区| 成人+在线+网站| 空姐吹箫完整版mv| 99与久久国产精品视频| 18+免费视频下载| 丁香啪啪综合成人亚洲小说 | av天堂最近中文在线免费观看 | 久久www免费人成看片高清| 欧美日韩国产高清一区二区三| A∨天堂精品视频| 摁着她干了好几次嫩B| 西西444WWW无码视频软件功能介绍| 久久精品国产一区二区| 91av免费在线观看| 日本美女直播一区二区三区| 亚洲综合成人av一区在线观看| 四虎影视无码永久免费| 久久亚洲精品中文字幕波多野结衣| 国产+免费+高潮| 色偷偷偷久久伊人大杳蕉 | 久久久精品小视频| 丁香婷婷六月综合交清| 被男人亲下面到高潮视频久久| 国产精品一区二区三区九一麻豆| 中文字幕国内自拍| 精品一区二区福利视频| 欧美日韩一区二区三区aa| 国产+高潮+少妇| 久久久久午夜精品色av| 国产一区二区三区不卡AV| 久久se精品一区二区| 亚洲欧洲无码一区二区三区| 欧美精品中文字幕在线视| 成年女人免费视频| 欧美日韩不卡视频合集| 欧美+日本+亚洲| 欧美大片一区二区三区视频| www.国产日韩在线视频| 妺妺窝人体色777777小馒头| 国语对白刺激真实精品91| 亚洲日韩精品区二区av| 4399午夜理伦免费播放大全| 公共场合高潮(h)公交车| 亚洲成a人蜜臀av在线播放| 亚洲国产精品一区二区久久hd| 99国产精品污污污网站免费看| 三上悠亚在线日韩精品| 高潮+白浆+在线观看| 久久一级黄色大片免费观看| 日韩av在线播放+免费| 先锋影音男人av资源| 国产精品毛片在线完整版SAB| 日本人妻丰满熟妇www色| 色狠狠久久aa北条麻妃| 国产午夜精品18久久蜜臀董小宛| 国产精品+丝袜+制服| 欧美日韩中文国产| 日韩丰满少妇无吗视频激情内射| 白丝爆浆18禁一区二区三区| 天堂√中文最新版在线| aa亚洲永久免费精品免费| 免费大片一级a一级久久三| 啊灬啊灬轻点第一次和外国人| 亚欧日韩欧美网站在线看| 国产乱淫av片杨贵妃| 成人在线观看一区| 日韩国产一区二区三区| 亚洲成人精品久久久国产精品 | 天堂а√在线中文在线新版| 天堂√中文最新版在线| 少妇精品综合无码| 日日摸日日碰人妻无码| 亚洲熟妇成人精品一区| 免费无码又爽又刺激高潮视频看看老A| 久久国产精品伦理片国产乱| 久久久久久免费毛片| 欧美日韩国产成人综合在线影院| 黄色av一区二区三区四区| 麻豆果冻传媒精品国产苹果| 黄色小视频在线看| 99久久国产综合久久精品| 精品一区二区三区四区五区六区 | 久久精品青草社区| 中文字幕+中文在线| 国产成人av网站网址| 国产高清精品福利私拍国产| 日本免码va在线看免费| 护士洗澡被狂躁A片在线观看| 99久久免费国产精品6| 日韩av在线一区二区三区| 亚洲精品乱码久久久久久花季| 成人精品一区二区户外勾搭野战| 日韩在线观看永久免费视频| 亚洲欧洲精品在线| 国产精品中文字幕有码在线观看| 亚洲欧美日产综合在线网| 欧美亚洲日本国产爽快片| 午夜福利理论片高清在线| 国产精品一区二区av麻豆| 亚洲伦理日韩无码| 日本高清免费毛片久久| 欧美成人精品三级网站视频| 国产91精品久久久久91黄色| 99精品在线观看中文字幕| 国产欧美日韩高清在线不卡| 美女高潮穿丝袜久久国产精品| 一本一道av无码中文字幕﹣百度| www.17c嫩嫩草色视频蜜桃| 一道本高清一区二区av| 亚洲国产黄在线观看| 国产av一区二区三区麻豆| 成人免费视频一区| 天堂av资源网在线观看| 国产精品一卡2卡三卡4卡 | 国产+高潮+在线观看| 日韩中文字幕影院| 免费香蕉成视频人网站| 午夜精品久久99蜜桃的功能介绍| 亚洲精品无码AⅤ中文字幕蜜桃| 欧美日韩国产精品| 日本一卡二卡三卡在线观看| 日韩成人无码毛片一区二区| 白嫩少妇各种bbwbbw| 国产乱子伦精品免费女| 欧美国产日韩在线一区二区三区 | 中文字幕亚洲图片| 国产精品三级国产精品高| 国产乱淫av蜜臂片免费| 免费精品国产一区二区三区| 国产一区二区三区在线| 亚洲美女高清无水av| 78色淫网站女女免费| 99久久综合国产一区二区| 国产乱人伦精品一区二区在线观看| 亚洲精品无码不卡| 在线观看国产色视频网站| 欧美中亚洲中文日韩| 在线永久免费观看的毛片| 国产乱妇乱子在线播放视频| 成人免费播放一区二区三区| 粗大猛烈进出高潮视频免费看| 蜜桃丰满熟妇av无码区不卡| 又黄又爽吃奶视频在线观看| 熟妇人妻av中文字幕老熟妇| 精品视频在线观自拍自拍| 欧美另类一区二区| 99国产精品免费播放| 无码+磁力链接+下载| 一本加勒比hezyo无码专区| 日韩欧美国产综合第一页| 日韩人妻无码精品久久久不卡| 无码人妻少妇久久中文字幕蜜桃| 新大地资源在线影视观看| 伦视频中文字幕亚洲天堂网| 免费看日产一区二区三区| 99久久人妻网站噜噜噜| 久久九九久精品国产| 疯狂做爰xxxⅹ高潮潮喷后感染| 久久亚洲精品中文字幕波多野结衣| 亚洲第一视频在线| 国产一级特黄aaa大片评分| 国产亚洲精品a第一页| 国产精品永久久久久久久久久| 麻豆黑色丝袜jk制服福利网站| 麻豆国产网站入口 | 亚洲无吗在线视频| 久久精品国产自在天天线| 高潮毛片77777777毛片| 裸体+国产+免费| 欧美狠狠入鲁的视频| 黄页免费视频网站国产一区| 国产精品高清一区二区| 欧美一级免费观看| 久久免费一区二区三区国产| 国产精品九九九久久综合| 粉嫩小泬无遮挡久久久久久| 乱色国内精品视频在线| 黄色av一区二区三区四区| 久久天堂无码av网站| www国产精品视频看看| 中文无码乱人伦中文视频播放| 永久免费看成人AV的动态图| 在线观看国产成人尤物av天堂| 日本欧美成人精品在线观看| 黄色一区二区三区在线观看| 成人免费无码大片a毛片小说| 色欲AV无码一区二区三区| 一区二区三区日韩欧美| 亚洲成a人片在线播放| 一区二区三区+视频| 亚洲国产精品一区二区成人片不卡| 亚洲高清无码视频| 在线+欧美+国产| 日本中文字幕一区二区高清在线| 天堂在线www四虎国产精品| 国产一区二区三区成人欧美日韩在线观看| 欧美成人一区二区三区蜜臀| 国产精品美女久久久久aⅴ| 成人欧美一区二区三区白人| 79年熟女大胆露脸啪啪对白p| 天堂中文在线8最新版地址| 亚洲精品一区三区三区在线观看 | 国产免费激情视频在线观看 | 国产三级国产三级国产| 国产女人高潮视频在线观看| 亚洲最新中文字幕成人| 日韩区一区二区三区视频| 亚洲精品成人av无码| 人妻有码精品视频在线| 亚洲欧美一区二区三区四区五区 | 日本久久久久久科技有限公司| 理论片+亚洲+欧美| 国产+免费+高清| 精品国产av色欲果冻传媒| 国产精品久久久久久久久久蜜臀 | 2022亚洲无砖无线码| 精品午夜福利在线观看| 亚洲禁18久人片| 普通话老太婆日B| 中国少妇裸体bbbbb| 国产又粗又长又硬又爽又黄视频 | 精品欧美一区二区三区不卡视频| 久久久久久久久久国产视频| www.1314久色.com| 午夜视频一区二区三区| 亚洲色18禁成人网站www| 亚洲+欧洲+国产av| 中文字幕熟女人妻偷伦| 国产+日产+欧美在线观看| 日本无卡码高清免费v| 中文字幕欧美一区二区在线| 中文字幕成人精品影院免费看 | 欧美日韩高清在线| 日本一道综合久久aⅴ久久| 丁香五月婷激情综合第九色| 乱码精品国产成人观看免费| 亚洲国产精品久久久久婷婷青年| 午夜福利片1000无码免费| yy111111少妇嫩草影院| 26uuu亚洲国产欧美日韩| 欧美大片18禁aaa片免费| 亚洲视频一区高清在线观看| 日韩欧美中文字幕视频在线看| aⅴ网站在线观看| 日韩中文字幕在线观看视频| 97超碰在线免费观看| 久久久久久国产精品美女| 国产精品美女无遮挡在线观看| 青柠影院在线观看高清电视剧荣耀| 最新久久99国产亚洲高清观看首页视频 | 国产经典一区二区三区| 丰满蕾丝乳罩少妇呻吟91| 在线观看人成视频网站不卡| 精品99久久久久久| 久久久精品一区二区三区| 色综合天天综合天天摸天天爽| 在线观看AV黄网站永久| 国产福利一区二区精品秒拍| 麻豆Chinese新婚XXX| 日本久久综合久久综合| 亚洲精品久久久无码av片软件| 天天躁日日躁狠躁欧美| 国产一区二区在线观看免费视频 | 国产精品婷婷色综合www在线| 精品人妻av区乱码色片| 一本大道HEYZO乱码专区在破解 | 日本在线免费播放| 中文字幕日韩一区二区三区不卡| 亚洲视频十八禁在线无遮挡 | 台中文娱乐网22ww| 精品+国产+高潮| 免费在线观看黄片| av在线直播一区二区三区| 成人a免费视频中文字幕| 亚洲啪啪aⅴ一区二区三区9色| 亚洲乱码尤物193yw| 国产乱子伦精品免费女| 久久中文字幕一区二区三区| 91亚洲欧美中文精品按摩| 欧美精品亚洲日韩aⅴ| 99热九九热精品在这里做| 日本xxxx色视频在线播放| 国产网红主播一区二区视频| 亚洲国产欧美人成| 婷婷激情五月av在线观看 | 国产精品99久久久久的智能播放 | 婷婷激情五月天综合丁香社区| 国产亚洲精品a久久77777| 四川乱子伦农村露脸| 欧美日韩一区二区三区| 97国产欧美人人爽人人做| 国产+r级+磁力链接| 欧美日本一道本一区二区中文| 亚洲+自拍+高潮| 丰满双乳峰白嫩少妇成人网站| 国产成人cao在线| 久久亚洲精品成人无码网站| 337p日本欧洲亚洲大胆精蜜臀| 人妻av一区二区三区精品 | 国产福利一区二区手机观看| 国产又硬又粗的视频在线观看| 中文字幕在线免费观看一区二区| 久久天天躁狠狠躁夜夜av不卡| 成在线人免费视频播放| 婷婷精品综合福利在线观看视频| 亚洲精品久久久久久中文| 日韩中文字幕AV| 国产精品国产精品国产| 国产综合在线观看一区精| 亚洲精品国产嫩草在线观看免费| 真人做爰视频成人观看| av一区二区在线播放| 九九热久久久99国产盗摄蜜臀| 免费大片黄在线观看| 国产又色又爽又刺激在线观看 | 少妇高潮流白浆在线观看| 久久婷婷人人澡人人喊人人爽| 久久中文字幕一區二區三區| 国产一本一道久久香蕉| 免费欧美视频一区二区三区| 高清不卡二卡三卡四卡免费| 91成人在线免费观看| 精品国产肉丝袜久久| 亚洲无码视频一区| 国产区77777777免费| 亚洲+综合久久+成人av| 中文文字幕一区二区三三| 国产激情99精品久久一区二区 | 免费视频www在线观看网站| 夜夜嗨av一区二区三区 | 亚洲精品久久久久久中文| 另类+女同+影音先锋| 国产丨熟女丨国产熟女视频| av久一区二区国产在线观看 | 亚洲国产人成自精在线尤物| 欧美亚洲国产精品第一页| 亚洲国产精品va在线看黑人| 8090+午夜福利视频+在线观看| 精品人妻毛片久久久久久| 人妻丰满熟妇岳AV无码区HD| 日本在线看片免费人成视频| 欧美精品少妇videofree720| 国产96精品久久久久久妇| 精品人妻毛片久久久久久| 欧美.日韩在线一区二区三区| 中文字幕一区二区在线看www| 亚洲欧美日韩中文字幕一区二区 | 日韩美女高潮喷水免费看| 17c在线观看免费播放电视剧大全| 精品人妻艳妇嫩草AV少妇| 美日韩熟女与少妇精品激情| 久久亚洲精品无码gv| 91丨九色丨黑人外教| 国产精品一卡二卡| 欧美精品一区二区三区一线天视频| 色婷婷五月综合亚洲小说| 蜜桃二区免费网站| 久久天天躁狠狠躁夜夜97| 色婷婷av久久久久久久| 欧美日韩国产精品成人| 特级西西444www无码视频免费看| 国产精品porn| 日本熟妇色xxxxx日本免费看| 巨爆乳无码视频二区涩漫| 665566综合中文字幕在线| 欧美亚洲国产精品久久高清浪潮| a片+磁力+下载| 乱码精品国产成人观看免费| av男人天堂最新亚洲天堂| 国产高潮又爽又刺激的视频免费 | 久久国产精品伦理片国产乱| 久久久久久臀欲欧美日韩| 国产成人精品免费视频 | 综合久久综合久久| 亚洲欧洲日产国码无码av专区| 成人孕妇专区做爰高潮| 一区二区三区日韩中文字幕欧美| 国产偷抇久久精品a片69| 日韩少妇激情一区二区| 中文字幕视频在线欧美一区| 91看片淫黄大片91桃色| 欧美精品一区二区在线观看播放| 懂色av绯色av密臀av| 人人澡人人澡人人看添av| 欧美国产日韩一区二区三区在线| 中文字字幕乱码视频高清| 亚洲+先锋影音+图片| 久久老熟妇精品免费观看| 久久综合精品无码av一区二区三区| 综合亚洲综合图区网友自拍| 国产午夜精品久久久久免| 国产午夜福利片在线观看| 午夜视频一区二区三区| 麻豆精品国产专区在线观看| 欧美日本91精品久久久久| 一区二区免费国产在线观看| 一区二区三区四区黄色片 | 99久久精品无码一区二区毛片| 精品亚洲中文字幕东京热网站| 午夜国产av新品一区二区| 亚洲精品入口一区二区乱麻豆精品| 欧美精品中文字幕在线视| 亚洲国产精品久久久久婷婷青年| 国产又大又黄又硬又爽的视频| 久久天天躁狠狠躁夜夜躁综合| 人妻无码一区二区不卡无码av| 国产三级在线三级久操欧美| 日韩欧美成人免费观看| 国产亚洲精品a第一页| 日韩欧美精品一区二区三区四区| 别揉我奶头~嗯~啊~一区二区三区| aⅴ网站在线观看| 18禁国产麻豆精品久久久久久| 亚洲欧美日本另类在线免费观看| 日韩美女精品一区在线视频| 国产av一区二区二区三区| 野花社区视频在线观看| 日韩国产在线观看不卡免费| 在线精品亚洲一区二区小说| 真实新婚偷拍Chinese| 日韩a∨精品日韩在线观看| 无码av中文一二三区| 亚洲香蕉中文日韩v日本| 亚洲va欧美va国产综合久久 | 国产精品99久久久久的智能播放| 青青青国产精品一区二区| 国产精品国产馆在线真实露脸| 邪恶肉肉全彩色无遮盖| 国产又粗又长又硬又爽又黄视频 | 国产亚洲一卡2卡3卡4卡网站| 国产三级精品三级三级视频| 精品欧美乱码久久久久久 | 亚洲色18禁成人网站www| 多乙亚洲国产中文综合| 久久精品国产精品亚洲艾草网| 久久婷婷五月综合色99啪ak | 夜夜国自一区+1080P| 国产福利第一视频| 丰满岳乱妇三级高清| 国产精品久久久久久久密月| 免费+日本+国产| 欧美日韩精品一区二区精品| 66国产在线一区二区三区| 亚欧洲一区二区三区伦理| 久久国产成人亚洲精品影院老金| 国产亚洲欧美精品久久久| 亚洲精品成a人在线| 在线免费观看尤物色视频网站| 久久久www成人免费看片| 黄色av一区二区三区四区| 精品一区精品二区| 搞美女的视频网站免费看| 亚洲欧美在线一区中文字幕| 亚洲免费午夜视频在线观看| 91视频最新入口| 全免费a级毛片免费看视频| 精品欧洲AV无码喷奶水| 久久激情久久久久久久熟女| 亚洲s久久久久一区二区| 亚洲精品一区二区三区不| 日本+国产+欧美| 中文字幕一区二区国产| 中文字幕av久久爽一区| 亚洲超清欧美不卡免费在线视频| 亚洲一区二区三区欧美 | 国内久久精品视频| 亚洲成a人片在线观看天堂 | 初撮り五十路老女人| 无码专区人妻丝袜| 一级香蕉视频在线观看| 91人人妻人人爽在线视频| 日韩欧美一区二区三| 亚洲熟妇av一区二区三区宅男| 国产不卡av免费在线观看| 合家欢下册公交车yiyu| 国产成av人片久青草影院| 亚洲精品在线免费播放| 久久中文免费视频| 亚洲精品久久久久午夜福禁果tⅴ| 亚洲精品乱码久久久久久| 91看片淫黄大片91桃色| 日韩精品无码一区二区三区| 亚洲日韩久久综合中文字幕 | 91精品aa一区二区三区| 国产精品一区二区色综合| 成人精品一区二区户外勾搭野战| 亚洲AV成人精品午夜一区二区| 欧美+日韩+中文| 精品国产中文一区二区三区| 亚洲日韩在线观看免费视频| 日韩毛片+18+欧美| 偷拍亚洲综合20p| 国产精品一区二区三区四区亚洲| 偷窥+国产+综合| 亚洲乱码中文字幕手机在线| 中文字幕乱码中文ktv| 色婷婷婷在线网站| 欧美日韩无线码视频在线播放| 狠狠躁夜夜躁人人爽天天开心婷婷| 波多野结衣一二三四区| 日本高清免费毛片久久| 一区精品在线观看| 91久久精一区二区三区大全| 99久久久国产精品免费99| 香蕉视频+app| 日韩高清av免费在线观看| 色狠狠一区二区三区熟女p| 无码专区视频精品老司机| 午夜精品久久久久久| 亚欧乱色国产精品免费九库| 亚洲乱码卡一卡二卡新区中国 | 久久精品国产乱子伦| 肉体公尝HD中文字幕| 国产熟女一区二区三区+视| 亚洲av产在线精品亚洲二区| 美女视频黄免费的亚洲男人天堂| 精品国产美女www爽爽爽| 99久久精品无码一区二区毛片| 日韩国产精品一区二区三区| 狠狠综合久久久久尤物丿| 亚洲狠狠色成人综合网| 天堂8中文在线最新版在线| 国产成人啪精品视频网站| 色久悠悠婷婷综合在线亚洲| 国产成人+综合亚洲+天堂 | 亚洲精品成人无码中文毛片不卡 | 欧美狠狠入鲁的视频| 国产精品99久久久网站| 亚洲国产精品热久久| 99精品国产综合久久久久五月天| 亚洲综合另类小说色区一| 伊人久久大香线焦av综合影院| 日韩人妻少妇一区二区| 亚洲国产综合久久一区二区| 日韩中文在线播放| 一人玩两女双飞视频| 《朋友的妈妈2》中字头歌词华丽的外出| 小蝌蚪国产午夜福利| 超碰夫妻91无码免费播放器| 少妇无码av无码专区线y| 国产午夜亚洲精品不卡在线观看| 日本亲子乱子伦xxxx60岁 | 久久99国产综合精品免费| 亚洲精品视频免费| 尹人香蕉久久99天天拍久女久| 成人在线观看www| 亚洲欧洲一区二区在线观看 | 亚洲一区中文字幕| 久久97久久97精品免视看秋霞| 不卡一区二区在线视频观看| 色哟哟丨小泬丨国产专区| 国产毛片久久久久久久18| 国产精品免费一区二区三区观看| 亚洲精品99在线| 亚洲日韩精品区二区av | 久久精品国产亚洲av成人婷婷| 亚洲+欧美+视频| 日本+超碰+专区| 中文字幕制服丝袜第57页| 河南熟女粗口叫床高潮| 国色一卡2卡二卡4卡乱码| 一本大道久久a久久精品综合1| 阿v天堂一区二区在线观看| 国产成人cao在线| 五月激情婷婷综合| 秋霞无码av一区二区三区| 国产va免费精品高清在线| 在线亚洲综合欧美网站首页| 国产又黄又大又爽| 已婚少妇露脸日出白浆| 欧美一卡二卡三卡四卡视频区| 西西4444www大胆高清图片| 久久精品国产99国产| 乱码人妻一区二区三区| 少妇人人凹凸XX凹凸爽凹凸| 免费人成在线观看网站免费观看| 国产69精品久久久久777| 国产原创在线观看福利精品| 久久躁夜夜躁天天躁| 熟女人妻av完整一区二区三区| 午夜小视频在线播放| 成人黄色手机在线| 99久久夜色精品国产亚洲a| 一本大道苍井空波多野结衣| 欧美aaaa视频| 成人精品av一区二区三区网站| 日本免费无遮挡毛片的意义| 18+在线看视频| 国产麻传媒精品国产av| 国产精品久久久久久久av福利| 欧美人成在线视频| 国产精品人人妻人人爽人人牛| 亚洲国产精品久久久久久| 屁屁国产第一页草草影院| www887色视频免费| 在线精品一区二区三区| 五月丁香综合激情| 精品人伦一区二区三区蜜桃网站| 国产精品一区二区麻豆| 91狠狠色丁香婷婷综合久久| 深夜男女福利18免费软件| 87福利午夜福利视频少妇| 日韩在线视频+在线播放| 国产精品久久久久国产三级传媒| 国产成在线观看免费视频密| 狠狠噜天天噜日日噜无码| 亚洲国产高清aⅴ视频| 久久av+高潮+搞 | 论坛+视频+无码| 成人麻豆精品国产自产在线观看| 中文字幕+乱码+日韩| 日日摸日日碰夜夜爽无| 熟妇乱子伦海角社区| 小视频免费在线观看| 黑人按摩人妻HD中字3| 初撮丰满五十人妻| 午夜视频在线观看国产| 成人动漫在线观看免费| 9.1人成人免费视频网站| 少妇精品揄拍高潮少妇| 足疗店熟女一88AV| 香蕉视频在线免费看| 国产+喷水+白浆| 无码人妻精品一区二区三区久久久| 精品国产乱码一区二区三区小黄书| 午夜理论欧美理论片| 思思99精品视频在线观看| 亚洲va欧美va人人爽春色影视| 日韩免费无码视频一区二区三区| 国产精品久久视频| 国产91久久婷婷一区二区| 免费+国产+ktv| 亚洲自偷自拍另类第1页| 日韩国产亚洲一区二区三区| 国产在线看片免费观看| 国产女人久久精品视| 国产免费拔擦拔擦8x高清在线人 | 免费看片亚洲一区二区三区| 国产v视频在线亚洲视频| 国产精品美女久久久久av丝袜| 日本道二区免费v| 善良娇妻让公泄欲| 亚洲情a成黄在线观看动| 久久久91精品国产一区二区三区 | 国产又硬又粗的视频在线观看| 拍拍拍产国影院在线观看| 国产日韩欧美在线一区二区三区 | 亚洲美女视频之国产精品| 国产三级在线三级久操欧美| 亚洲国产欧美一区二区三区一| 高潮少妇高潮久久精品99| 精品久久久久久亚洲中文字幕 | 全免费a级毛片免费看视频| 久久机热在线国产视频手机| 亚洲欧美另类在线图片区| 国产免费一级毛卡片AAAAAA级| 国产av高清怡春院| 国产精品女同一区二夜夜夜嗨| 亚洲AV人无码激艳猛片| 国产精品一二三在线| 欧洲免费无线码在线一区| 网友自拍+偷窥+国产| www日韩avcom| 免费污污污完整版网站| 狠狠色狠狠色合久久伊人| 国产一区二区三区精品在线| 隔着超薄丝袜进入上司| 日韩在线观看视频精品资源| 伊人久久大香线蕉av色| 超高清欧美videossexopor| 歪歪爽蜜臀av久久精品人人| 美女网站免费久久久久久久| 91天堂一区二区在线播放| 青青草视频在线观看亚洲 | 欧美日韩不卡在线视频| 久草在视频免费福利| 新婚夜少妇被躁bd免费视频| 国产成人精品网站| 色猫咪免费人成网站在线观看| 日韩激情免费视频一区二区| 人妻+日本+调教| 国产熟女一区二区三区+视| 欧美成人精品一区二区三区在线观看| 国产8888888久久久久| 亚洲欧美日韩国产91在线| 国产精品久久久久久网站| 天堂av国产夫妇精品自在线| OL超薄肉丝美脚一区二区| 九九影院电视剧免费播放观看| 日韩精品+伦理视频+在线观看| AV无码无在线观看免费| 最近最新的免费中文字幕| 国产在线一区二区三区四区五区| 好男人在线影院官网www| 国产高清在线不卡| 亚洲+欧洲+国产av| 久久亚洲精品无码观看不| 久久久久久臀欲欧美日韩| 哈尔滨熟女白浆91九色| 懂色av一区二区三区四区五区| 免费+成人+国产| 亚洲欧洲日本在线| 亚洲熟妇av综合网| 国产69精品久久久久熟女| 97无码精品综合| 亚洲男女内射在线播放| 女人扒开腿婬乱A片| 成人秘视频一区二区三区| 一区二区免费视频| 人摸人人人澡人人超碰手机版| 一级全黄裸体免费观看视频| 国产美女在线观看| 国产成人精品18禁三区 | 小泽玛利亚AⅤ成人片| 亚洲精品欧美日韩| 亚洲va久久久噜噜噜熟女软件| 中文字幕一区二区三区乱码在线| 99久久无码一区人妻a片蜜| 国产偷人妻精品一区| 久久精品国产自清天天线| 99久久精品国产波多野结衣| 天堂а√在线地址8中文种子| 国产亚洲制服丝袜一区二区| 久久精品国产99精品国产2021| 日韩av大片在线观看| 日韩人妻少妇一区二区| 国产精品自在线拍国产| 国产日韩精品欧美一区喷水| 人妻中文字幕一区二区三区视频| 日韩精品久久无码中文字幕| 国产日韩欧美91| 国产一区二区三区在线看麻豆| 色偷偷偷久久伊人大杳蕉| 国产精品久久久久久久一级| 中文字幕+17c| а√中文在线资源库| 99久久免费精品国产免费高清| 日韩精品+伦理视频+在线观看| 亚洲欧洲无码一区二区三区| 国产精品免费观看调教| 91亚洲美女在线视频观看| 精品国产不卡一区二区三区| 东北高大丰满BBBBzBBB| 国产不卡在线播放| 成年人91日韩视频在线观看| 红莲两瓣夹玉柱最经典四句话| 精品中文字幕在线观看| 国产69久久久欧美一级| 亚洲专区在线视频| 清纯粉嫩极品夜夜嗨av| 推油少妇久久99久久99久久| 日韩欧美国产另类久久久精品| 天天天天做夜夜夜做| 欧美综合在线观看视频| 91香蕉视频国产在线观看| 国产亚洲成人av| 日韩欧美亚洲国产第一页| 99久久精品6在线播放| 日本不卡视频一区二区三区| 亚洲人妻在线播放| 久久久综合久久久| 国产成人综合久久亚洲精品| a片+磁力+下载 | 欧美肥臀大乳一区二区免费视频| 亚洲熟妇AV日韩熟妇在线| 中美日韩精品在线免费观看| 电视剧大全免费全部在线观看| 丰满熟妇人妻av无码区| 天天干天天色综合网| 一个人视频在线观看www中文| 全部露出来毛走秀福利视频| 91无人区乱码卡一卡二卡| 日韩熟妇中文色在线视频| 视频一区二区三区亚洲天堂网| 自拍区小说区图片区亚洲| 欧美一区二区三区大片| 亚洲日韩国产精品第一页一区| 天美麻花果冻视频大全英文版 | 成人a免费视频中文字幕| 久久99国产综合精品免费| 色狠狠久久aa北条麻妃| 美女高潮穿丝袜久久国产精品| 欧美高清69xxvideos18hd| 国产最新精品自产在线观看| 国产精品永久免费视频| 国产欧美一区二区精品忘忧草| 玩弄少妇高潮a片水蜜桃网站| 中文字幕久久久人妻无码| 亚洲国产av导航第一福利网| 亚洲一区二区三区乱码av麻逗| 亚洲永久免费播放片国产| 少妇下面好紧好多水播放| 国产主播一区二区不卡在线观看| 熟女露脸91Porn| 六月丁香五月激情综合| 中文在线观看免费| 伊人成人开心婷婷久久网| 亚洲熟妇AV一区二区三区 | 亚洲欧美视频在线播放| 精品成人乱色一区二区| 丁香色欲久久久久久综合网| 精品亚洲中文字幕东京热网站| 亚洲乱码一区av黑人高潮| 久久人妻无码一区二区三区av| 少妇爆乳无码专区网站| fulao2官网下载国内载点破解| 国产精品欧美精品日韩专区一乛方 | 国产欧美在线观看不卡| 国产超碰人人做人人爽av大片| 久久久麻豆精品一区二区| 成人免费毛片东京热| 日日噜噜噜夜夜爽爽狠狠视频| 二区三区偷拍浴室洗澡视频| 亚洲国产欧美中文手机在线| 波多野结VS黑人无码| 水牛影视一区二区三区久| 粗大的内捧猛烈进出少妇| 99国产拍偷久400部热久久| 97碰成人国产免费公开视频| 91porny首页入口| 亚洲国产成人精品女人久久久逼| 亚洲精品久久久久久蜜桃| 亚洲一区二区+欧美| AV天堂无码资源网| 成人在线免费播放视频| 中文字幕av手机版| 国产精品久久久久久久免费大片 | 女同学的嫩苞20p| 亚洲欧洲日本国产精品欧洲| 亚洲成色777777女色窝| 亚洲欧洲日本在线| 草草久久97超级碰碰碰| 国产欧美日韩精品专区| 在线观看com国产视频| 天天综合亚洲综合网天天αⅴ| 日本免费一区二区三区四区五区 | 久久精品国产精品国产精品黄| 国产寡妇精品久久久久久| 欧美日韩国产制服精品第二页| 欧美毛多水多黑寡妇| 欧美日韩免费不卡激情在线视频 | 国产精品―色哟哟| 亚洲va国产日韩欧美精品色婷婷| 中文字幕在线日韩欧美在线观看 | 日本爽爽爽爽爽爽在线观看免| 无码成人AAAAA毛片AI换脸| 刘玥亚洲一区二区三区91久久| www.日韩免费观看视频| 欧美久久久久久久久久久久久久 | 日韩精品一区二区三区在线观看视频网站| 又粗又黄国产视频.com| 天堂а√中文最新版地址在线| 欧美黄色免费视频| 在线aⅴ亚洲中文字幕| 99e久热只有精品8在线直播| 亚洲+欧美+综合| 深夜国产福利小视频在线观看| 欧美香蕉爽爽人人爽| 一区二区三区四区黄色片| 久久伊人精品视频| 黄色av一区二区三区四区 | 毛片+免费视频在线看| 成人+免费+真人视频| 精品少妇一区二区三区四区五区 | 精品国产一区二区三区色欲| 丝袜无码一区二区三区| 色88欧美日韩国产无线码| 日韩av在线播放+免费| 视频+成人+在线| 黄色片网站在线观看| 午夜成人理论福利片| 亚洲国产欧美另类| 天堂8中文在线最新版在线| 欧美在线视频在线观看一区| 337P粉嫩大胆噜噜噜55569| 熟妇乱子伦海角社区| 少妇被粗大的猛进出69影院| 99国产一区二区| 欲香欲色天天综合久久| 亚洲日韩av无码不卡一区二区三区| 国产熟女一区二区三区+视| 九九久久99综合一区二区| 新欧美ssss亚洲综合| 98在线视频噜噜噜国产| 色综合欧美亚洲国产| 免费在线观看av| 无遮挡又色又刺激的视频+黄| 亚洲一区二区影视| 91精品视频在线看| 精品国产一区二区三区久 | 超碰97国产精品人人cao | 国产精品人人妻人人爽人人牛| 国产妇女馒头高清泬20p多毛| 亚洲国产中文字幕2020| 天天躁日日躁狠躁欧美| 一本大道HEYZO乱码专区在破解| 国产日韩欧美中文另类| 狠狠色婷婷久久综合频道日韩| 丝袜tk一丨视频vk| 成·人免费午夜无码视频蜜芽 | 亚洲精品国产中文字幕在线| 久久精品国产首页国产欧美| 亚洲影院中文字幕| 国产精品免费视频网站| 国产高清一区二区三区视频| 国产精品人妻系列21p| 少妇奶水亚洲一区二区观看| 免费啪视频观在线视频在线| 内射白浆一区二区在线观看 | 国产精品二区一区二区aⅴ污介绍| 爆乳の豊満な肉体| 亚洲精品无码播放| 亚洲欧美日韩国产成人精品| 久久天天躁狠狠夜夜躁2020| 四虎影视在线观看国产精品| 久久人人爽人人片av免费| 国产精品久久久精品三级18禁| 国产精品爆乳在线播放| 加勒比HEZYO黑人专区| 国产又黄又粗又爽又色的视频| 91亚洲美女在线视频观看| 亚洲人妻内射一区二区三区| 天堂在线www四虎国产精品| 神宫寺奈中文无码字幕| 丰满熟妇人妻av无码区| 国产+女女+喷水| 怡红院一区二区三区在线| 天天爽夜夜爽夜夜爽精品视频| 精品国产一区二区三区免费| 日韩v欧美v中文在线| 国产精品成人免费播放| 亚洲av蜜桃永久无精品| 五十路丰满中年熟女中出| 人妻+种子+磁力链接| 国产+日韩+欧美在线观看| 免费国产精品黄色一区二区| 福利丝袜视频一区二区三区| 热久久6只有精品444777| 久热99精品视频免费观看免费| 精品美女一区二区三区瓯| 亚洲国产欧美中文手机在线| 裸体+国产+免费| 特级特黄AAAAAAAA片无锁| 美女视频图片久久黄网站| 天摸夜夜添久久精品亚洲人成| 久久久久国产一区二区三区| 日韩午夜福利无码专区a| 亚洲高清国产av一二三区| 国产亚洲精品自拍| 18+在线观看视频| 四虎影视国产精品永久在线| 日韩中文字幕国产| 6080午夜福利视频在线观看免费| 91探花足浴店少妇在线| 亚洲Av永久无码天堂影院黑人| 亚洲欧洲成人a∨在线观看| 国产精品日韩av网站国产女人| 日韩免费无码视频一区二区三区| 国产精品女同一区二夜夜夜嗨| 在线观看国产视频| 国产嫩苞又嫩又紧AV在线| 婷婷五月综合色中文字幕 | 影音先锋+欧美+爆乳| 无码人妻一区二区一牛影视| 神马午夜精品95| 欧美精品午夜一区二区三区| 久久久这里只有精品10| 巜交换做爰2h无删减| 激情综合色五月六月婷婷| 99国产精品久久久久老师| 亚洲永久免费视频| 张津瑜国内精品www在线| 在线+中文字幕在线观看| 普通话老太婆日B| 亚洲欧美日韩中文字幕一区二区 | 天堂在线天堂新版| 欧美亚洲精品一区二区| 国产精品视频播放| 一个人视频在线观看www中文| 中文字幕精品亚洲无线码vr| 被老师粗大jib捣出了白浆视频| 亚洲第一极品精品无码久久| 超碰在线最新地址| 久久人人爽亚洲精品天堂| 久久综合久久自在自线精品自| 综合久久综合久久| 老熟妇午夜毛片一区二区三区| 黑人巨茎绿帽人妻| 午夜婷婷精品午夜无码a片影院| 破了亲妺妺的处免费视频国产| 天天狠天天插天天透| 99久久久久国产精品免费| 欧美日韩一区二区三区aa| 国产成人精品亚洲一区二区麻豆| 2018av无码视频在线播放| 久久久噜噜噜久久久午夜| 在线观看免费高清视频大全追剧| 国产精品久久久久一区二区国产 | 亚洲AⅤ无码国精品中文字慕| 色狠狠成人综合网| 精品人妻人人做人人爽夜夜爽| 久久天天躁狠狠躁夜夜网站 | 日韩精品人妻系列无码专区免费| 国产精品一卡2卡三卡4卡| 成人孕妇专区做爰高潮| 亚洲AV成人噜噜无码网站| 国产av一区最新精品| 国产精品尤物铁牛tv| 亚洲婷婷天堂在线综合| 国产一区日韩二区欧美三区| 黄色欧美在线观看| 亚洲Av乱熟妇A片大全| 五十路丰满中年熟女中出| 永久免费未满蜜桃| 在线观看一区二区三区四区| 国产成人精品一区二区在线观看| 免费人成视频网站在线下载| 18+韩国美女主播| 91资源新版在线天堂成人| 无码中文字幕免费一区二区三区| 中文字幕一区二区精品区| 少妇人妻无码专区毛片| 黄色av网站免费观看| 中文字幕第一頁亞洲| 亚洲一区二区视频在线看| 90岁老太婆乱淫| 欧美成人高清视频| japanese熟女熟妇乱milf| 久久综合88中文字幕| 国产伦理五月av一区二区| 亚洲欧美国产日本一区二区| 亚洲va久久噜噜噜久久| 亚洲天堂一区二区免费在线观看| 手机在线免费观看毛片av| 波多野结衣一区二区三区av高清| 天天综合亚洲综合网天天αⅴ| 少妇伦子伦精品无吗在线观看| 欧美视频在线观看| 91狠狠色丁香婷婷综合久久| 国产区又黄又硬高潮的视频| 被拉到野外强要好爽黑人| 日韩精品+一区二区+在线观看| 亚洲精品国产av日韩精品| 97人妻系列高清一区二区| 亚洲AV无码久久久久网站蜜桃| 视频一区二区三区免费| 日本福利视频一区| 国产精品成人免费视频网站| 久久视频这里只精品| 主播福利视频一区二区三区 | 日日噜噜噜噜久久久精品毛片| 无码+磁力+日本| 狠狠色狠狠色综合日日小说| 一个人看的国产精品视频 | 亚洲视频在线免费| 欧美日韩成人一区二区| 少妇av一区二区三区| 久久久久综合一区二区不卡| 中文字幕国产精品日韩精品动漫 | 一本色道久久综合狠狠躁邻居| 中文字幕在线看高清好看的电视剧| 精品日韩国产一区二区三区| 在线观看国产视频| 国产精品亚洲视频一区二区三区 | 欧美日韩黄色一级片| 一本一道久久a久久精品| 免费av男人天堂亚洲天堂| 成人国产免费视频| 国产精品欧美一区二区三区不卡 | 国产99久久久久久免费看农村| 亚洲+精品+无码视频| 99久久超碰国产精品蜜臀| 亚洲va久久久噜噜噜熟女软件| 午夜久久久久久久久| 99国产精品久久久久老师| 人人妻人人爽人人澡人人| 深夜福利在线播放| 女同久久精品国产99国产精品| 无码人妻aⅴ一区二区三区玉蒲团| 蜜桃精品久久久久久久免费影院| 九九99久久精品在免费线18| 国产精品原创巨作av女教师 | 99er热精品视频| 人人爽日日躁夜夜躁尤物| 国产+日韩+欧美| 久久免费视频精品在线| 国产这里只有精品| 国产+精品+美女| 综合色区无码一区| 日韩成人无码毛片一区二区| 人妻av中文字幕一区二区三区| 亚洲啪啪aⅤ一区二区三区9色| 午夜婷婷精品午夜无码a片影院 | 全程露脸3p东北老女人| 1024国产视频| 日本一道一区二区视频| 影音先锋+拘束+高潮| 久久精品视频在线看4| 国产白丝护士av在线网站| 国产精品视频来自看久久久久| 七仙女大乳全黄裸体| 亚洲欧洲中文日韩久久av乱码| 噜噜噜亚洲精品在线观看| 亚洲精品无码专区久久久| 又色又爽又黄又无遮挡的网站| 韩国一级精品毛片| 欧美婷婷六月丁香综合区| 日本中文字幕+在线播放| 亚洲婷婷综合色高清在线| 久热99精品视频免费观看免费| 中文字幕+乱码+中文字幕在线观看| 短裙公车被强好爽H吃奶视频| 欧美肥屁videossex精品| 18+在线看视频| 亚洲精品av中文字幕在线在线| 苍老师在线观看免费播放电视剧中文| 亚洲911精品成人18网站| www.91自拍| 国产精品岛国久久久久久久久红粉 | 免费+高清+国产| 国产美女狂喷水潮在线播放| 多乙亚洲国产中文综合| 日韩福利片在线观看| 91探花足浴店少妇在线| 卧室大战欧美肉丝丝袜| 中文字幕av手机版| 亚洲欧美精品伊人久久| 18禁止的网站黄污污| 亚洲欧美成人aⅴ在线| 特级西西444WWS高清视频| 免费久久99精品国产自在现线| 国产精欧美一区二区三区| 国产原创在线观看福利精品| 1000部拍拍视频18勿入| 淫臀艳妇(全)王雪琴| 初撮八十路高龄老熟女| 欧美日韩亚洲视频一区二区三区| 新欧美ssss亚洲综合| 99国产精品免费播放| 国产亲子乱弄免费视频| 久久久麻豆一区二区三区四区| 国产美女精品视频线播放| 97人妻系列高清一区二区| 丰满人妻熟妇乱又仑精品 | 亚洲911精品成人18网站| 国产+日本+欧美在线观看| 亚洲综合一区和综合二区| 九九久久精品免费观看| 久久国产精品影视| 国精品午夜福利视频不卡| 欧美日韩黄色一级片| 日韩精品久久无码中文字幕| 国产91在线免费观看视频| 日美韩一区二区三区| essuess免费观看播放| 国内精品国产成人国产三级粉色| 亚洲欧美国产综被窝蜜臀| 成年人午夜免费视频| 91香蕉国产线观看免费永久| 伊人亚洲大杳蕉色无码| 日韩高清av免费在线观看| 亚洲狠狠色成人综合网| 久久伊人精品视频| 欧美日本一区二区三区| 亚洲日本高清成人aⅴ片| 182tv午夜福利| 激情综合色五月六月婷婷| 国产96精品久久久久久妇| 日韩高清特级特黄毛片| 亚洲一区二区经典在线播放| 成全影视免费观看| 欧美日韩在线播放| 国产色乱码一区二区三区| 在线观看黄色av| 黑人精品一区二区| 国产免费完整高清电视剧在线看| 国产又爽又粗又猛的视频| 中文字幕岳伦妇无码中出| 欧美精品v欧洲高清视频在线观看| 日韩欧美中文字幕1区在线观看| 久久综合久久88中字幕文| 国产欧美成人xxx视频| 亚洲色欲色欲欲www在线| 人妻美妇疯狂迎合系列视频| 日本高清中文字幕一区二区三区| 亚洲欧美综合精品另类天天更新| 男女乱淫免费视频一区二区三区| 18+动漫视频网站| 国产在线精品观看| 一区二区国产日韩欧美综合| 国自产拍偷拍精品| 亚洲一区二区久久久| 大香蕉国产在线视频| 国产又黄又大视频| 精品国产91久久久久久一区| 亚洲精品7777777| 国产乱码一区二区三区免费| 又色又爽又黄又无遮挡的网站 | 乳欲人妻1~5集动漫无删减| www国产亚洲精品久久麻豆| 天堂www天堂在线资源网| 日本乱码一区二区三区不卡| 欧美巨大xxxx做受中文字幕 | 免费+国产+视频| 99精品视频免费版的特色功能 | 日韩精品视频在线观看三区| 亚洲高清视频一区二区三区| 综合久久婷婷综合久久| 18+日本一区二区| 国产伦精品一区二区三区精品视频| www.精品综合久久久久| 八戒青柠影院观看免费高清电视剧| 久久精品苍井空精品久久| 天堂网www在线最新版资源| 床震高潮在线观看无遮挡| 香蕉视频免费网站| 经典三级欧美人妻在线视频| 山东乱子伦视频国产| 国产亚州精品女人久久久久久| 一区二区三区不卡在线观看| 韩国做aj的视频大全| 国产精品理论在线观看| 波多野结衣中文字幕一区二区三区| 18+在线观看视频| 粗壮挺进人妻水蜜桃成熟漫画| 欧美经典影片视频欧美一级网站| 亚洲乱亚洲乱妇无码麻豆| 2022一本久道久久综合狂躁| 亚洲成人AV在线| 日本高清免费视频www色| 色一情一乱一乱一区免费网站| 精品久久久久一区二区国产| 欧美+日韩精品+另类图片| 视频久re精品在线观看| 亚洲天堂2014| 美女粉嫩极品国产在线2021| 亚洲一区二区在线精品| 制服肉丝袜亚洲中文字幕| 九九热久久久99国产盗摄蜜臀| 强硬进入岳A片69| 免费+国产在线观看| 亚洲国产三级在线观看| 欧美不卡一卡二卡三卡| 91精品国产成人观看免费九色| 《与上司疯狂做爰》| 一本大道大臿蕉视频无码| 99pao在线视频国产| 国产精品久久久av免费不卡| 最日本中文字幕中文翻译歌词 | 日韩av免费在线播放| 欧美成人一区在线| 日本人妻丰满熟妇www色| 精品人妻伦一二三区久久竹夫人| 午夜免费理论片A无码| www国产亚洲精品久久麻豆| 情人伊人久久综合亚洲| 中文+字幕+国产| 黑人与人妻无码中字视频| 久久人妻无码一区二区三区av| 精品欧美在线观看视频二区| 成人+国产+免费| 国产又粗又猛又爽的视频a片| 一本丁香综合久久久久不卡网站| 亚洲国产精品第一区二区| 亚洲高清无码视频| 亚洲精品丝袜国产自在线| 亚洲日韩精品一区二区三区| 中文字幕一区二区国产| 久久久亚洲欧洲日产国码二区| 亚洲国产精品不卡av在线| 一本到亚洲中文无码av| 亚洲免费午夜视频在线观看| 成年女人免费视频| 桃花岛成人在线观看| 人妻无码中文专区久久av| 天天综合色天天综合色h| 久久久久久久久人妻a免费看| 小夫妻高潮偷拍合集| 国产中文在线三级不卡| 亚洲综合色噜噜狠狠网站超清| 久久久国产精华液999999| 真人抽搐一进一出视频| 国产精品99久久久久久人红楼 | 亚欧洲一区二区三区伦理| 中文字幕国产精品日韩精品动漫| 东京亚洲女图片在线观看| 国内揄拍国内精品少妇| 国产欧美日韩高清在线不卡| 国产精品人八做人人女人a级刘| 欧美日韩国产一区二区三区在线 | 51妺妺嘿嘿午夜成人A片| 久久婷婷综合99啪69影院| 久久久久国产精品人妻aⅴ网站| 夜鲁夜鲁狠鲁天天在线| 少妇久久久久久久| 日韩美女免费线视频| 国产美女视频免费观看www| 亚洲区在线观看视频在线| 国产精品乱子伦XXXX| 亚洲+视频+免费| 亚洲国产精品+嫩草影院+久久| 九九精品在线观看| 亚洲成人免费观看| 在线亚洲专区高清中文字幕| 日本高清免费毛片久久| 一本大道久久精品懂色aⅴ| 久久天天躁狠狠躁夜夜AV| 精品国产91久久久久久动漫| 《公妇公侵波多野结衣》_| 亚洲+欧洲+国产一区二区三区| 成人孕妇专区做爰高潮| 欧美成人精品三级网站视频| www.在线观看麻豆| 麻豆国产一区二区三区| 国产综合一区在线观看97| 国产麻传媒精品国产AV| 国产探花视频在线观看网址| 中文字幕av久久爽一区| 国产又色又爽又黄的网站在线 | 国产一级免费视频在线| 91精品国产91久久综合| 成年人在线视频观看| 偷自拍亚洲视频在线观看99| 香蕉视频在线观看黄| 久久久噜噜噜久久久精品| 无码中文字幕日韩专区视频 | 青青草+深夜福利+免费观看| 一本加勒比HEZYO无码 | 亚婷婷洲av久久蜜臀小说| 天天综合在线观看| 日本xxxxl码在中国是几码| 最新黄色在线观看一区二区三区 | 中文在线天堂а√在线| 91偷拍精品一区二区三区| 粉嫩一区二区三区| 亚洲一区二区无码影院| 日韩人妻少妇一区二区| 视频一区视频二区制服丝袜| 久久婷婷五月综合色精品| 无码区a∨视频体验区30秒| 久久亚洲精品无码观看网站| 久久国产精品午夜福利影视| 欧美一区二区三区亚洲国产精品| 制服丝袜诱惑在线观看一二区 | 色一乱一伦一图一区二区精品| а√8天堂资源在线官网| 高H荤爽肉欲文〈np〉宝玉| 巨爆乳肉感一区二区三区| 少妇乳大丰满高潮喷水| 亚洲国产精品s8在线观看| 亚洲欧美精品久久久久| 日韩精品欧美国产精品亚| 国产免费福利在线视频| 男人+高清无码+一区二区| 亚洲最大一级视频| 亚洲天天做日日做| 欧美视频+在线观看| 欧美黑人喷潮水xxxx| 亚洲成人av在线| 东京热加勒比久久| 大地资源二中文官网| 中文字幕+乱码+中文在线| 先锋影音+中文字幕| 亚洲+精品+手机| 在线观看免费人成视频播放| 小泽玛利亚AⅤ成人片| 国产+免费+视频| 无码+磁力+日本| 国产+在线+激情| 久久精品国产亚洲av桃花av | 日韩精品无码一二区久乐网| 在线视频+欧美+亚洲| 日韩+欧美+毛片| 小處女末发育嫩苞AV| 国产+高潮+在线观看| 精品国产av一区二区三区蜜臀| 久久国产精品亚洲一区二区三区| 欧美一区二区三区人妖视频| 国产欧美一区二区精品久久久| 91久久久久久国产精品| 日本三级欧美三级人妇视频黑白配| 在线中文字幕视频| 99欧美日本一区二区留学生| 久久久午夜精品理论片中文字幕| 在线天堂中文www视软件| 亚洲高清av在线| 欧美精品久久一区二区| 亚洲精品无码播放。| 天堂在线www天堂在线| 久久99av无色码人妻蜜柚| 日本无码一区二区三三| 国产精品久久99精品毛片三a| 免费av大全在线看不卡| 亚洲精品国产精品国自产中出| 欧美日韩亚洲tv不卡久久| 国产免码va在线观看免费| 中文字幕视频一区| 国产美女精品视频线播放| 天天操天天舔天天干| 欧美在线高清视频| 人妻+种子+磁力链接| 精品一区二区三区三区| 欧美日韩国产一区二区三区综合| 亚洲熟妇AV一区二区三区 | 国产自偷在线拍精品热| aⅴ网站在线观看| 在线观看免费人成视频播放| 日本一卡二卡三卡在线观看| 欧美一区二区三区激情桃蜜臀| 成人av免费观看| 在线看片免费人成视频国产片| 精品熟人一区二区三区四区| 欧洲人妻丰满av无码久久不卡| 久久五十路丰满熟女中出| 国产精品高清尿小便嘘嘘主演| 国产+在线+天堂| 国产精品一级a级理论片在线| 日韩av在线一区二区三区| 国产av一区最新精品| 日本五十肥熟交尾| 国产av精国产传媒| 少妇内射兰兰久久| 不卡一区二区在线视频观看| 国产精品久久av免费观看| 亚洲精品一线二线三线无人区| 91精品日产一二三区乱码| 国产熟睡乱子伦午夜视频麻豆 | 亚洲欧美日韩国产一区二区在线 | 国产一二中文字幕91影院日韩欧美 | 色综合伊人丁香五月桃花婷婷| 欧美一级淫片007| 日韩美女视频一区二区| 艳妇臀荡乳欲伦交换av1| 足疗店无套内谢少妇| 日韩亚洲av人人夜夜澡人人爽| av男人天堂最新亚洲天堂| 色又黄又爽18禁免费网站现观看| 免费午夜无码18禁无码影院| 国产在线清纯极品美女援交| 在线亚洲国产鲁一鲁网| 91兰州熟女富婆露脸| 老熟女熟妇一区二区三区| 国产精一品亚洲二区在线播放| 国产成人午夜片在线观看高清观看| 日本爽爽爽爽爽爽在线观看免| 久久99精品无码一区二区| 久久久久久久久久韩国精品| 国产精品尤物乱码一区二区 | jzzjzz日本丰满成熟少妇| 中文欧美日韩久久| 国产熟女毛多水大高潮| 国产毛片久久久久久久18| 91亚洲乱码卡一卡二卡新区豆| 亚洲精品日韩一区二区小说| 久久中文字幕一區二區三區| 亚洲AV无码乱码精品观看明里| 丁香开心五月婷婷精品伊人| 懂色av色吟av夜夜嗨| 一点不卡v中文字幕在线| 亚洲AV一二三又爽又色又色| 黄网站色视频免费观看美女| 国产av麻豆一区麻豆二区| 亚洲精品久久久久久中文传媒| 国产三级在线免费观看| 成人+免费+欧美| 99国产综合精品| 日韩精品a片一区二区三区妖精| 亚洲一区二区三区久久久 | 亚洲精品成人av无码| 国产激情小视频在线观看的| 国产精品久久久久久a..| 在线播放av网站| 亚洲欧美日韩中文播放| 亚洲一区二区三区国产中文| 日韩精品一区二区色偷拍| 天堂在线天堂新版www| 男人天堂亚洲天堂视频在线观看| 中文字幕淑女丝袜人妻在线| 久久无码av中文出轨人妻| 亚洲欧美在线视频| 久久久久久久福利国产一级 | 欧美+国产+在线观看| 日本69式三人交| 午夜精品久久久久久久| 国产一卡2卡3卡四卡精品国色无边| 中文字幕+乱码+中文字幕无忧 | japanese国产在线看| 国产精品99一区二区三区| 中文字幕免费观看视频人妻一区 | 欧美国产日韩第一页| 最新国产精品拍自在线观看| 日韩无码中文字幕| 国产国产成人久久精品| 日日摸日日碰人妻无码| 日本一卡二卡视频| 国产精品女同一区二区三区| 精品国产一区二区三区久| 国产在线麻豆在拍91精品| 亚洲精品无码av中文字幕| 妺妺窝人体色777777小馒头| 久久久精品成人免费影院| 东京热人妻丝袜无码av一二三区观| 成人精品视频中文字幕版| 久久久久青草大香综合精品| 欧美精品久久久久久久久久久| 成人午夜精品一区二区张津瑜| 欧美精品一区二区三区四区久| www.17c嫩嫩草色视频蜜桃| 日韩欧美一区二区在线| 狠狠色丁香婷婷亚洲综合| 国产乱码精品一区二区三| 777777国产7777777| 亚洲乱码卡一卡二卡新区豆| 中文字幕视频在线欧美一区| 国产亚洲精品自在久久| 亚洲a∨大乳天堂在线| 在线精品视频一区二区三四| 亚洲av乱码国产精品色午麻豆| 蜜乳AV一区二区三区| 成人国产热播资源| 亚洲无AV在线中文字幕| 日韩国产在线观看不卡免费| 日韩美女免费线视频| 青青草国产在线视频综合| 日韩.国产.欧美在线字幕| 亚洲l码和欧洲m码的区别| 亚洲精品日韩中文字幕久久久| 日韩中文字幕国产| 久久久精品人妻久久影视| 免费+群p+视频| 国内精品自线一区二区三区| 熟妇人妻无乱码中文字幕蜜桃| 欧美在线一二三区| 欧美精品一区二区三区一线天视频 | 国产乱子伦精品免费女| 欧美国产日韩第一页| 能免费在线观看av的网站| 欧美日韩亚洲成人| 国产av高清怡春院| 成人免费毛片男人用品| 久久综合久久88中字幕文| 亚洲综合图色40p| 图片区小说区视频区综合| 四川女人毛多水多A片| 亚洲一区二区三区四| 免费成人网一区二区三区| 欧美精品一区二区蜜臀亚洲| 免费+群p+视频| 中文天堂最新版资源www| 亚洲欧美日韩视频一区二区| 亚洲中文字幕无码久久2017| 国产在线清纯极品美女援交 | v8888AV偷拍夫妻| 国产亚洲视频免费播放| 国产chinese中国xxxx| 男女猛烈激情xx00免费视频 | 大地资源中文一二三页的特点| 亚洲av无码一区二区三区网站 | 宅女午夜福利免费视频| 一本大道道久久综合av| 躁老太老太騷bbbb| 99国产一区二区| а√天堂+地址+在线| 精品无码综合一区二区三区| 人妻美妇疯狂迎合系列视频| 99久久久久免费精品国产| 国产成人午夜福利在线观看 | 日韩和的一区二在线| 国产理论视频在线观看| 久久亚洲春色中文字幕久久久 | 国内精品久久久久影院+日本| 中文字幕人妻少妇引诱隔壁| 亚洲午夜久久久久久国产精品| 国产一国产二国产三| 大桥未久+脚+磁力链接| 欧美日韩一区二区免费视频| 蜜臀午夜精品视频在线观看| 善良娇妻让公泄欲| 国产免费无遮挡吃奶视频| 久久久久久经典精品欧美激情| 亚洲毛片在线播放| 午夜视频在线观看1区2区免费| 亚洲午夜免费福利av| 久久综合亚洲国产精品| 熟妇乱子伦海角社区| 91啦丨露脸丨熟女| 18禁美女国产精品久久久久久| 亚洲Av乱熟妇A片大全| 国产精品一区二区三区九一麻豆 | 无码h黄肉动漫在线观看网站| 日韩一级毛一片欧美一级| 国产亚洲综合区成人国产| 国产乱人伦精品一二三区二区| 亚洲一区无码中文字幕| 欧美热在线视频精品999| 九九九久久久精品| 中文字幕一区二区三区5566| 国内精自线一二三四在线看| 日韩午夜激情视频| 丰满少妇大力进入av亚洲葵司| 一区三区在线专区在线| 亚洲综合激情国产一区| 超薄丝袜足j好爽在线观看| 国产美女视频一区二区三区| 7878成人国产在线观看| 国产女子爆操高潮免费视频| 国产精品久久视频| 国产一区二区黑人欧美xxxx| 国产日韩欧美综合精品一区二区| 日韩精品视频在线视频播放| 成人免费一区二区三区视频软件| 国产亲伦免费视频播放| 精品久久久久久久久久熟女| 麻豆美女丝袜人妻中文| 人人澡人人澡人人看添| 国产成人啪精品视频免费网页| 一区精品视频在线观看免费| 久久激情久久久久久久熟女 | 亚洲少妇无码综合| 裸体+国产+免费| JIZZJIZZ亚洲无乱码| 干淫语对白骚妇视频| 日本在线一区二区三区欧美| 天天澡天天狠天天天做| 亚洲欧美日韩视频一区二区| 日本熟妇50乱偷交尾| 国产高清成人免费视频在线观看| 免费观看四虎国产精品午夜| 国产精品毛片久久久久久明星| 无码专区aaaaaa免费视频| 星空传媒天美传媒有限公司| 日韩欧美精品一区| 一区二区三区(欧美激情)| 中国猛少妇色xxxxx| 999久久久久久久久6666| 扒开女人内裤猛进猛出流出白液 | 久久精品久久精品亚洲人| 日韩av在线第一页| 国产精品好好热av在线观看| 黄色av一区二区三区四区| 国产在线观看欧美二区三区| 亚洲精品国精品久久99热一| 国产午夜福利精品一区二区三区| 啊轻点灬太粗嗯太深了蜜桃av| 亚瑟女厕盗摄视频大全| 香蕉视频在线观看国产婷婷| 亚洲一区二区美女在线观看| 特级精品一α级毛片视频| 人妻暴雨中被强制侵犯在线| 日韩欧美高清在线一区二区| 亚洲国产av导航第一福利网| 欧美久久国产精品| 成人+国产+在线| 国产乱人伦精品一区二区_国产91在线| 日本国产亚洲一区在线观看视频| 无码AⅤ精品一区二区三区| 欧美污视频免费在线观看| 天堂在线免费观看视频www| 国产亚洲Av人片在线观看| 日韩在线视频+在线播放| 久久精品视频国产| 亚洲成av人片一区二区三区 | 人妻av乱片av出轨| 成人免费福利片在线观看| 国产精品熟女高潮精品| 国产精品精品久久久久久甜蜜软件| jav+中文字幕| 一级片在线免费观看| 免费av男人天堂亚洲天堂| 久久久久国产精品亚洲欧美| 欧美国产又粗又长又爽视频| 欧美成人手机视频| 久久国产亚洲高清观看| 亚洲欧洲一区二区福利片| 日韩精品一区二区在线观看| 精品国产色综合久久| 免费观看又污又黄在线观看| 91亚洲成a人片在线观看www| 酒吧+天海翼+影音先锋| 日韩三级伦理片色呦呦中文字幕| 尤物九九久久国产精品的特点 | 亚洲国产精品国自产拍色欲av| 国产成人高清在线观看视频| 国产麻豆一精品一av一免费| 日本黄色美女视频| 亚洲精品国产精品国自产网站 | 日本熟妇黑毛浓密白浆| 久久国产精品免费| 精品女二区三区激情免费视频 | 亚洲精品无码久久千人斩探花| 欧美婷婷六月丁香综合区| y111111111免费观看电视| 波多野结衣绝顶高潮喷水| 国产一级内射91小草| 友田真希88AV在线播放| 亚洲一区日韩在线| 九九久久99综合一区二区| 久久免费看少妇高潮毛片| 午夜精品一区二区不卡二卡 | 成人免费播放一区二区三区| 天天天欲色欲色www免费| 囯产精品久久777777换脸| 成人精品一区二区三区网站| 国产成人精品1沈娜娜| 亚洲成人久久一区二区三区| 亚洲天堂av一区二区三区| 偷自拍亚洲综合在线| 妇女嫩BBB揉BBBBBB搡| 国产成人精品男人的天堂网站| 国产精品久久久久一区二区| 亚洲AV无码久久精品色欲| 国产在线不卡精品网站| 国产成人精品1沈娜娜| 另类亚洲欧美在线| 免费看片www.137| 无码毛片一区二区| 6080午夜福利视频在线观看免费| 99aAV久久精品| 久久99国产综合精品| 欧美成人午夜免费视在线看片| 最近黄色国产mv在线观看| 强硬进入岳A片69| 国产+高潮+自拍| 日本任你躁免费精品视频2| 国产免费三级现现频在线观看| 国产女人18毛片水18精品软件| 波多野结衣被躁50分钟| 日本顶级metart裸体全部| yy6080亚洲精品一区| 国产麻豆乱码精品一区二区三区| 最新电视剧2025热播最火剧免费观看| 国产在线精品拍揄自揄免费 | 少妇内射兰兰久久| 国产午夜精品一区理论片| 《朋友的妈妈2》中字头歌词华丽的外出| 国产精品一区二区三区女同| 999在线观看精品免费不卡网站 | 国产一区二区三区在线观看网站| 欧美极品少妇xxxxⅹ免费视频| 久久99国产综合精品免费| 乡下人产国偷v产偷v自拍| 影音先锋大型av资源| 精品久久久久久中文字幕大豆网| 天天爽夜夜爽精品视频婷婷| 亚洲AV色综成人网| 国产曰又深又爽免费视频| 国产91av视频在线观看| 国产精品鲁丝av一区二区| 制服丝袜诱惑在线观看一二区| 97国产乱码精品一区二区三上| 亚洲人成精品久久久久桥| 四虎精品美女国产在线观看| 国产一区精品va在线播放| 中文字幕高清在线| 亚洲成人免费影院| 精品熟人一区二区三区四区| 波多野结衣视频一区| 国产亚州精品女人久久久久久 | 国产在线一区二区三区四区五区| 搜查官+丝袜+影音先锋| 四虎影视永久免费观看在线| 亚洲欧美日韩国产综合v| 亚洲国产精品一区二区成人片不卡| 在线亚洲一区二区| 狂躁少妇XXXX高潮无码| 久久一级黄色大片免费观看| 亚洲中文字幕人成乱在线| 亚洲欧美另类在线图片区| 国产精品毛片久久久久久明星| 久久亚洲精品无码观看网站| 国产+免费+裸体| 98在线视频噜噜噜国产| 国产一区日本二区在线观看| 久久精品成年人免费看国产片| 国产精品久久久久久成人| 国产精品视频_区二区三区| 青草伊人久久综在合线亚洲| 伊人69久久久久久综合国产| 久久久久久久久久99精品| 91精品久久久蜜桃网站| 天天揉久久久久亚洲精品| 黑人巨大精品欧美视频一区| 蜜桃二区免费网站| 国产99久久久久久免费看农村| 影音先锋大型av资源| yjizz视频网| 国产午夜精品一区二区芒果视频| 久久99精品视频免费观看| 在线观看特色大片免费网站 | 国产+日韩+在线高清| 黄频视频在线观看| 亚洲欧美日韩中文无线码| av在线播放日韩亚洲欧| 国模大尺度福利视频在线| 欧美伊香蕉久久综合网另类 | 久久精品国产亚洲Av久| 欧美成人精品三级网站视频| 国内精品久久久久久久影视麻豆| 尤物在线精品视频| 国产最爽乱淫视频国语对白 | 国产精品永久久久久久久| 五月婷婷在线视频观看| 国产一级av国片免费| 男人午夜免费视频观看在线| 大胆欧美熟妇xxbbwwbw高潮了| 4438ⅹ亚洲全国最大色丁香| 国产色综合天天综合网| 2018年亚洲欧美在线视频| 亚洲精品制服丝袜四区| 国产精品久久久久久影院| 成人在线观看视频网站| 日韩欧美一区二区在线视频| 精品无码av一区二区三区不卡| 人妻少妇精品视频一区二区三区| 国产素人在线观看人成视频| 吸舌添泬的A片视频| 亚洲成亚洲乱码一二三四区软件| 天堂日韩人妻一区二区三区| 999在线观看免费高清电视剧| 欧美xxxx免费虐| 久久只有精品视频国产最新地址| 人妻精品国产一区二区| 国产又黄又粗无遮挡全黄色视频| 91亚洲成a人片在线观看www| 久久精品欧美亚洲一区二区三区 | 87福利午夜福利视频少妇| 无码+磁力链接+下载| 亚洲成人在线播放视频| 多P无码视频网页| 国产92成人精品视频免费| 探花风韵犹存少妇88AV| 藏精阁成人免费观看在线视频| 久久中文精品无码中文字幕下载| 免费香蕉成视频人网站 | 最新国产精品精品视频| 好吊妞视频这里有精品| 人人妻人人澡人人爽曰本| 国产婷婷一区二区三区久久| 固产精品凹凸777777| 欧美激情视频免费| 国产在线一区二区香蕉| 久久91女精一区禁18看片 | 国产91在线免费观看视频| 国产又粗又猛又爽又黄视频| 51视频国产精品一区二区| 成人做爰A片免费看黄冈宾馆| www波多野结衣com| 免费视频播放片一二三四五 | 91精品国产高清一区二区三区| 亚洲七七久久精品中文国产| 国产成人高清在线观看视频| 欧美日韩激情在线观看免费| 欧美毛多水多黑寡妇| 中文文字幕中文字幕在线中文乱码| 中文人妻无码一区二区三区信息| 高潮+白浆+国产| 老熟妇乱子交视频一区| 亚洲风情亚aⅴ在线发布| 国产99久久精品一区二区| 99精品国产综合久久久久五月天| 一区二区不卡av免费观看| 国产成人精品久久久| 国产高清视频在线观看免费视频| 久久亚洲精品中文字幕无男同 | 亚洲精品久久酒店| 国产美女午夜福利视频| 亚洲美女网站免费观看一区| 久久国国产免费999| 欧美一区精品中文字幕综合看片 | 国产亚洲精品香蕉网九色| 欧洲一区二区成人| 国产精品人人妻人人爽人人牛| 国产精品婷婷色综合www在线| 久久精品国产亚洲av高清观看 | 久久国产熟女这里只有精品| 真人一级毛片全部播放 | 成人+欧美精品+一区二区三区| 免费ā片在线观看| 成人毛片视频免费看| av中文天堂在线| 97人伦色伦成人免费视频| 岛国+激情+无码| 日韩成人大屁股内射喷水| 韩国和日本免费不卡在线v| 亚洲AV色综成人网| 国产亚洲成年网址在线观看| 《朋友的妈妈2》中字头歌词华丽的外出 | 影音先锋+中文+人妻| 夜色毛片永久免费| 国产激情视频在线播放| 国产精品vr虚拟专区| 亚洲va中文字幕不卡无码| 精品人人妻人人澡人人爽牛牛| 成人午夜免费网站| 粉嫩一区二区三区四区公司1| 天海翼+无码+磁力| 免费观看成人毛片| 国产精品中文字幕一区二区| 欧美精品三级黄片| 国产99久久久国产精品潘金| 国产精品久久久久不卡绿巨人| 国产精品成人一区二区三区| av免费看片一区二区三区| 青青草视频在线观看亚洲| 亚洲精品久久久久久无码色欲四季 | 75歳の熟女セックス合集牛牛| 国产免费午夜福利不卡片在线| 国产精品三级在线波多野在线| 久热这里只有精品99在线观看| 亚洲国产一区二区在线| 亚洲精品久久久久久中文传媒| 中文日韩欧免费视频| 日韩在线一区视频| 国产VA免费精品高清在线| 一区二区免费视频| 18成人福利网站在线观看| 精品欧美亚洲一区国产高潮| 国产不卡中文字幕在线观看| 射进来av影视网| 国产国语露脸激情在线看| 亚洲精品久久久久久中文传媒 | 国产+精品+日韩| 影音先锋+在线+2| 美女日批视频在线观看| 99精品国产免费观看图片| 国产传媒麻豆剧精品av| 四虎永久在线精品免费下载| 久久99精品久久久久久园产越南| 成人+欧美+日本| 在线看人妻视频中文字幕| 久久婷婷五月综合色国产免费观看 | 一区二区三区无码按摩精油| 老汉tv永久视频福利在线观看 | 又粗又黄又爽视频免费看| 亚洲a∨大乳天堂在线| 日韩裸体人体欣赏pics| 明星乱淫免费视频欧美| 五月综合网亚洲乱妇久久| 蜜臀国产精品久久久久久| 亚洲免费在线观看视频一区| 台湾妹子中文娱乐网| 六十路初撮り完熟在线播放| 激情+国产+精品| 亚洲+欧洲+国产成人av| 国产+高潮+在线观看| 亚洲一卡二卡三卡四卡无卡姐弟| 亚洲欧美日本国产| 亚洲理论中文字幕| 中文天堂最新版资源www| 国产又大又猛又粗视频在线观看| 亚洲欧美日韩高清一区| 亚洲精品成人a8198a| 亚洲日本乱码一区二区产线一∨| 免费+国产+在线观看| 丰满人妻熟妇乱又伦精品劲| 中文字幕妇偷乱视频在线观| 亚洲欧洲精品成人| 一本在线免费视频| 欧洲美熟女乱又伦免费视频| 爽爽爽a男女免费观看一区二区| 国产欧美日本亚洲精品一5区| 九九九精品成人免费视频小说| 国产三级免费观看| 欧美日韩无套内射另类| 国产人妻人伦AV片三A级做爰| 国产精欧美一区二区三区| 亚洲综合五月天婷婷丁香| 国产午夜精品一区二区芒果视频| 中文字幕av网页观看日韩| 黄页网站大全男女免费观看| 人妻被按摩到潮喷中文字幕| 91在线视频观看| 波多野结衣精品一区二区三区| 亚洲无线码中文字幕在线| 免费全部高h视频无码软件| 痉挛高潮喷水av无码免费| 亚洲成人久久一区二区三区| 欧美一区二区最爽乱淫视频免费看| 国产国产精品久久久久久久| www.17c嫩嫩草色蜜桃网站| 经典三级+少女潘金莲| 一卡二卡不卡免费视频观看| 91蜜桃传媒精品久久久一区二区| 亚洲欧美综合精品另类天天更新| 久久婷婷五月综合色丁香花| 国产亚洲Av人片在线观看| 91狠狠色丁香婷婷综合久久| 亚洲欧洲日产国码中学| 爆黑正能量料最新| 18+动漫视频网站| 亚洲第一美女精品久久久久| 无码+调教+西瓜影音| 亚洲天天做日日做| 久久久久国产精品嫩草院| 国产精品99久久久久久有的能 | 蜜桃tv一区二区三区| 久久99久久99精品免视看| 吸舌添泬的A片视频| 久久99+极品+中文字幕| 国产成人高清在线观看视频| 免费人成再在线观看视频| 国产老头和老太xxxx视频| 黄师傅AV一区二区| 足疗店无套内谢少妇| 久久精品国产九九久久6| 国产精品成年片在线观看| 热99久久精品这里都是精品| 亚洲中文av字幕在线观看| 国内外成人免费视频| 狠狠躁夜夜躁人人爽天天天天97| 日韩av免费在线看| 国产精品一区二av18款| 免费在线观看不卡av| 亚洲欧美日韩国产一区二| 日本熟妇50乱偷交尾| 欧美污视频免费在线观看| 日本xxxxl码在中国是几码| 91精品国产综合久久久久| 91嫩草国产线观看亚洲一区二区| 亚洲精品国产一区二区在线观看| 强开小婷嫩苞又嫩又紧视频韩国 | 99久久综合国产一区二区| 国产三级在线观看视频| 久久亚洲精品国产亚洲老地址| 久久天天躁狠狠躁夜夜不卡 | www.国产一区二区三区av| 国产+裸体+视频| 又爽又色禁片1000视频免费看| 中国猛少妇色xxxxx| 无码少妇高潮浪潮av久久| 亚洲一区二区观看| 国产69精品久久久久男男系列| 日日鲁夜夜如影院| 国产美女免费无遮挡网站| 精品一区二区三区三区| 日韩欧美一级视频在线观看| 久久91精品国产91久久蜜月| 成人午夜高潮免费视频在线观看| 一区二区免费视频| 欧洲免费无线码在线一区| 在线观看国产小视频网站| 精品国产91久久久久久| 这里只有精品国产| 国产精品久久久久久久久久98| 国产在线高清精品二区| 欧美日韩大片中文字幕在线观看| 国产精品三级国产精品高| 最近中文字幕在线视频8| 国产午夜福利100集在线观看| 国产午夜精品一区二区三区| 92福利影院一区二区三区| 中文字幕成人在线视频精品| 久久精品国产亚洲Av久| 亚洲一级视频在线观看视频| 久久www免费人成看片高清| 日韩美女后入式在线视频| 国产精品欧美一区二区三区奶水| 亚洲免费视频一区二区| 丰满的熟妇岳中文字幕| 在线观看国产小视频网站| 成人免费动漫无码大片a毛片| 好吊妞视频这里有精品| 99国内精品久久久久久久| 国产一级免费观看| 张柏芝亚洲一区二区三区| 丫丫影院免费观看电视剧| 亚洲欧美另类在线图片区| 日本黄色激情视频| 青青草视频+在线观看| 亚洲国产成人精品女人久久久久| 欧美成人一区在线| 巨大荫蒂视频欧美另类大| 免费+精品+在线看| 福利丝袜视频一区二区三区| 日韩精品免费一区二区三区四区| 亚洲精品无码av中文字幕| 思思久热精品在线| 国产美女直播亚洲一区久久| 精品人妻码一区二区三区| 中文字幕亚洲精品一区| 91在线中文字幕| 无套内谢少妇在线观看视频| 久久综合九色欧美婷婷| 国产激情久久久久熟女老人| 床戏(巨肉高h)双男| 欧美激情伦理一区二区三区| 日韩a∨精品日韩在线观看| 久一蜜臀av亚洲一区| 免费+岛国+h动漫| av一区二区无人区在线观看| 婷婷五月六月激情综合色中文字幕| 精品香蕉久久久午夜福利| 丁香花高清在线完整版| 国产精品夜间视频香蕉酒店| 国产美女又黄又爽的视频| 久久婷婷色综合老司机| 国产精品久久久久久久久久免| 视频区另类中文字幕欧美日韩| 三个熟睡少妇的按摩中文字幕| 日韩精品欧美国产精品亚| 91香蕉国产线观看免费永久| 天堂中文官网在线| 在线看人妻视频中文字幕| 国产精品日韩av网站国产女人| 加勒比色综合久久久久久久久 | 国语对白刺激在线视频国产网红| 国产主播自拍av| 91这里都是精品久久久久| 麻豆日产精品卡2卡3卡4卡5卡 | 日本xxxx裸体xxxx裸体图| 欧美+成人+一区二区三区| 999久久久国产精品视频| 国产精品一区二区av麻豆| 成全高清免费完整观看| 中文天堂最新版资源www| 一区二区激情av| 国产在线观看精品一区二区三区| 日本道二区免费v| 娇妻被黑人伦轩1~14| 国产精品露脸视频| 国产亚洲一卡2卡3卡4卡网站 | 99精品视频99| 麻豆妓女爽爽一区二区三| 网友自拍+偷窥+国产| 亚洲国产成人精品女人久久久逼 | 国产精品欧美久久久久久日本一道| 久久国国产免费999| а√天堂+地址+在线| 免费a级毛片18以上观看精品 | 亚洲国产日韩欧美在线播放| 久久亚洲精品中文字幕无男同 | 九九热线视频精品99| 乌克兰女人大白屁股ass| 18+sexvideos| 日日碰狠狠添天天爽五月婷| 久久这里只精品国产免费99| 精品久久久久一区二区国产| 日韩三区在线观看| 国产在线观看精品一区二区三区| 色丁狠狠桃花久久综合网| 18+在线观看网站| 一级成人欧美一区在线观看| 午夜福利理论片高清在线观看| 二个人看的www视频中文字幕| 久久久久久国产精品| 国产成人精品自拍| 久久国产精品午夜福利看片| 91中文字幕视频| 精品多人p群无码| 精品免费产品日亚韩二区| 久久视频一区二区| 精品www久久久久久奶水| 免费观看无遮挡www的视频午夜| 综合成人欧美网日韩青椒网| 香蕉视频在线观看黄| 成人国产免费视频| 欧美日韩国产一区二区三区综合 | 91久久久久久亚洲精品蜜桃 | 精品欧美日韩中文字幕在线观看| 日本不卡视频一区二区三区| 国产成人精品网站| 狠狠亚洲婷婷综合色香五月排名| 多P无码视频网页| jzzijzzij日本成熟丰满| 国产成人av网站网址| 色欲天天网站欧美成人福利网| 日日摸日日添日日透| 狠狠cao日日穞夜夜穞av| 嫩BBB槡BBBB槡BBBB18| 91精品久久久久久综合乱菊| 午夜三级a三级三点窝| 少妇厨房愉情理伦片bd在线观看| 亚洲国产精品国自产拍色欲av| www.delisava.com| 国产精品主播一区二区三区 | 精品一区精品二区| 欧美自拍另类欧美综合图片区| 日韩欧美在线观看污视频| 亚洲综合精品一区二区三区| 国产高清午夜人成在线观看| 日韩熟妇中文色在线视频| 成人在线免费播放视频| av天堂中av世界中文在线播放| 三年大全免费大片三年大片第一集| 国产在线一区二区三区乱码| 人妻无码av一区二区三区精品| 四lll少妇BBBB槡BBBB| 成人在线免费观看视频| 九九热视频在线播放| 日本高清中文字幕一区二区三区| 精品欧美一区二区三区不卡视频| 无码专区人妻丝袜| 日韩欧美成人免费观看| 91贵在真实少妇SPA推油按摩| 97视频在线观看免费| 美女互摸视频一区二区三区| 青椒国产97在线熟女| 日本精品videosse×少妇 | 国产精品黄色在线免费观看| 亚洲成aⅴ人片在线观| 亚洲精品国产乱码不卡在线观看| 狠狠色噜噜狠狠狠狠97俺也去| 二个人看的www视频中文字幕| 亚婷婷洲av久久蜜臀小说| 国产一区二区在线观看视频免费| 一本一道av无码中文字幕﹣百度| 亚洲精品中文字幕无码AV| 国产午夜精品一区二区三区| 新无码毛片一区二区有码| 久久精品亚洲一区二区三区浴池| 久久综合九色欧美婷婷| 久久天天躁狠狠躁夜夜96流白浆| 原创婹农村熟女v88Av| 国产成人avxxxxx在线观看|